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We briefly describe Zermelo’s second proof of the well-ordering theorem [2]. The pre-
sentation corresponds to a formalized version in Coq. In order to make the connection
to the Coq formalization clear, we give the informal description in the language of type
theory instead of set theory.
Let A be a type. We will refer to elements p, q of type A → Prop as sets and

elements D,E of type (A → Prop) → Prop as properties . We say an element x of type
A is in a set p when px holds. We will use p ⊆ q as notation for ∀x.px → qx and
D ⊆ E as notation for ∀p.Dp → Ep. Given a property D,

⋂
D is defined to be the set

λx.∀p.Dp → px.
Assume ε : (A → Prop) → A is a choice operator on A. That is, we assume for every

nonempty set p, p(εp) holds. We also assume ε is extensional: εp = εq if p ⊆ q and
q ⊆ p.
Given a set p, p′ is defined to be the set λx.px∧x 6= εp. That is, p′ contains precisely

the elements of p except εp.
Our goal is to define a relation ≤: A → A → Prop such that ≤ is a well-ordering of

A. That is, ≤ must be a linear ordering (≤ must reflexive, transitive, antisymmetric
and linear) and must have the following well-ordering property: For every nonempty
set p, there is an element x such that px and ∀y.py → y ≤ x.
In order to define ≤, we first inductively define a property C.

C2

Cp

Cp′
C3

D ⊆ C

C(
⋂

D)

Zermelo [2] calls this property M and defines it as the intersection of all Θ-chains, where
a Θ-chain is defined (up to some minor details) as a property closed under the rules
above.
We will now prove the sets satisfying C are linearly ordered by ⊆. The idea for this

proof can be found in [2].

Lemma 1. If Cp and Cq, then p ⊆ q or q ⊆ p.

Proof. We prove ∀p.Cp → ∀q.Cq → p ⊆ q ∨ q ⊆ p by induction on Cp. The case for
the rule C3 is easier to argue so we present it first. In this case we have D ⊆ C and
assume as inductive hypothesis

∀p.Dp → ∀q.Cq → p ⊆ q ∨ q ⊆ p.
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We must prove ∀q.Cq →
⋂

D ⊆ q∨q ⊆
⋂

D. Let q such that Cq be given. By excluded
middle, there is either some p in D such that p ⊆ q or there is no such p. If there is such
a p, then clearly

⋂
D ⊆ q. Otherwise, the inductive hypothesis implies ∀p.Dp → q ⊆ p

and q ⊆
⋂

D follows.
All that remains is to argue the C2 case. We assume

(1) ∀q.Cq → p ⊆ q ∨ q ⊆ p

as the inductive hypothesis and must prove

∀q.Cq → p′ ⊆ q ∨ q ⊆ p′.

In order to prove this, we argue by induction on Cq.
As above, we argue the C3 subcase first. Assume E ⊆ C and the inductive hypothesis

∀q.Eq → p′ ⊆ q ∨ q ⊆ p′.

We must prove p′ ⊆
⋂
E or

⋂
E ⊆ p′. By excluded middle, there is either a q in E

such that q ⊆ p′ or there is no such q. If there is such a q, then
⋂
E ⊆ p′. If there is no

such q, then the inductive hypothesis implies ∀q.Eq → p′ ⊆ q and p′ ⊆
⋂
E follows.

Finally, we argue the C2 subcase. In this case we assume Cq and an inductive
hypothesis p′ ⊆ q ∨ q ⊆ p′. We must prove p′ ⊆ q′ or q′ ⊆ p′. If q ⊆ p′, then q′ ⊆ p′ and
we are done. Assume p′ ⊆ q. If εq is not in p′, then p′ ⊆ q′ and we are done. Assume
εq is in p′. By ( 1) for q′ we know either p ⊆ q′ or q′ ⊆ p. If p ⊆ q′, then p′ ⊆ q′ and we
are done. Assume q′ ⊆ p. If εp is not in q′, then q′ ⊆ p′ and we are done. Assume εp is
in q′. In this final subcase, we will prove a contradiction. Since εp is in q′, we know εp

is in q and εp 6= εq. To obtain a contradiction, we will prove εp = εq. By extensionality
of ε, it suffices to prove p ⊆ q and q ⊆ p.
To prove p ⊆ q, assume x is in p. If x = εp, then we already know x is in q since εp

is in q′. If x 6= εp, then x is in p′ and is hence in q since p′ ⊆ q.
To prove q ⊆ p, assume x is in q. If x = εq, then we already know x is in p since εq

is in p′. If x 6= εq, then x is in q′ and is hence in p since q′ ⊆ p. �

The following lemma is a consequence of the lemma above.

Lemma 2. If Cp, Cq and εp is in q, then p ⊆ q.

Proof. Assume Cp, Cq and εp is in q. Since Cp′ we can apply Lemma 1 to conclude
either p′ ⊆ q or q ⊆ p′. We cannot have q ⊆ p′ since εp is in q but is not in p′. Hence
p′ ⊆ q. Since εp is in q, this is enough to conclude p ⊆ q. �

For each set p, let p be the least set satisfying C such that p ⊆ p. In other words, p
is the intersection of all q such that Cq and p ⊆ q. We call p the closure of p.
By the definition of p and C3 it is clear that p ⊆ p and Cp hold. We can also prove

that if p is nonempty, then εp is in p.

Lemma 3. If p is a nonempty set, then εp is in p.

Proof. Let p be a given nonempty set. Assume εp is not in p. Let q be p′. We prove
q is a set satisfying C such that p ⊆ q. We know Cq by C2 and Cp. In order to prove
p ⊆ q, let x in p be given. We know x is in p since p ⊆ p. We know x 6= εp since we
have assumed εp is not in p. Hence x is in q.
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The definition of p implies p ⊆ q. Since p is nonempty and p ⊆ p, we know p is
nonempty and so εp is in p. Hence εp is in q, contradicting the choice of q as p′. �

Let {a} be the set λx.x = a.

Lemma 4. ε{a} = a

Proof. By Lemma 3 we know ε{a} is in {a}. That is, ε{a} = a �

We define a ≤ b to mean b is in {a}. We prove ≤ is the desired well-ordering.

Theorem 1. ≤ is a well-ordering on A. That is, we have the following:

(1) ≤ is reflexive.
(2) ≤ is transitive.
(3) ≤ is antisymmetric.
(4) ≤ is linear.
(5) Every nonempty set has a ≤-least element.

Proof.

(1) To prove a ≤ a, we must prove a is in {a}. This is obvious since {a} ⊆ {a}.

(2) Assume a ≤ b and b ≤ c. We prove a ≤ c. That is, we prove c is in {a}. Let
p be such that Cp and {a} ⊆ p. Since a ≤ b, b is in p. Hence {b} ⊆ p. Since

b ≤ c, c is in p. Hence c is in {a}.
(3) Assume a ≤ b and b ≤ a. We prove a = b. By Lemma 4 it suffices to prove

ε{a} = ε{b}. By extensionality of ε it suffices to prove {a} ⊆ {b} and {b} ⊆ {a}.

If c is in {a} (i.e., a ≤ c), then c is in {b} (i.e., b ≤ c) since b ≤ a and we have

already proven ≤ is transitive. If c is in {b} (i.e., b ≤ c), then c is in {a} (i.e.,
a ≤ c) since a ≤ b and we have already proven ≤ is transitive.

(4) Let a and b be given. By Lemma 1 either {a} ⊆ {b} or {b} ⊆ {a}. If {a} ⊆ {b},

then b ≤ a. If {b} ⊆ {a}, then a ≤ b.
(5) Let p be a nonempty set. Let x be εp. We will prove x is the least element of p.

We know x is in p by Lemma 3. Let y in p be given. We will prove x ≤ y. That
is, we prove y is in {x}. Let q be such that Cq and {x} ⊆ q. We must prove y

is in q. Since x is in q, Lemma 2 implies p ⊆ q. Hence y is in q as desired.
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