
A SEMANTICS FOR INTUITIONISTIC HIGHER-ORDER LOGIC

SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX

CHAD E. BROWN

Abstract. We give an intuitionistic extensional higher-order logic supporting higher-
order abstract syntax. We give a model proving consistency of the logic, in spite of
the fact that it has no standard set theoretic models. The development has been
formalized in Coq using the Autosubst package.

1. Introduction

We describe a simply typed intuitionistic extensional higher-order logic [6] supporting
higher-order abstract syntax [10]. The logic has an M -set model [4] where M is the
monoid of substitutions (up to σ-equality) [1, 7]. We furthermore describe a Coq
formalization. The Coq formalization makes use of the Autosubst package [11] to
conveniently define untyped lambda terms and reason up to σ-equality. For simply
typed λ-terms we use de Bruijn indices [5] combined with Church style typing [6].
Since dependent types are necessary to represent Church style typing, we do not use
Autosubst for simply typed terms.
M -sets as models for simple type theory were described in [4]. That taking M to be

the monoid of substitutions gives a model for classical nonextensional higher-order logic
has been known since then, but unpublished. One can find some information in [12].
The M -set model is essentially the special case of a presheaf category. Hofmann

also considered presheaf semantics for higher-order abstract syntax [8]. We leave the
clarification of the precise relationship between Hofmann’s presheaf models and the
M -set model described here to future work.

2. HOL with HOAS

We give a higher-order logic which supports reasoning about untyped λ-terms using
higher-order abstract syntax.
We begin by defining a set T of simple types :1

• ι : This is a base type which will be interpreted as untyped λ-terms (in de Bruijn
representation).

• o : This is a base type of propositions.
• α → β: This is the type of functions from α to β.

We next define a family of simply typed terms. We informally describe simply typed
terms using names, but the formalization uses de Bruijn indices.

Date: August 12, 2014.
1See stp in the formalization. In the formalization we also include a type of natural numbers, but

we ignore this type here.
1

2 CHAD E. BROWN

For each type α ∈ T , let Vα be a countably infinite set of variables of type α. We
define a set Λα of terms of type α as follows:

• For each variable x of type α, x ∈ Λα.
• L ∈ Λ(ι→ι)→ι. (This is a constant which will represent untyped λ-abstractions.)
• A ∈ Λι→ι→ι. (This is a constant which will represent untyped application.)
• If s ∈ Λα→β and t ∈ Λα, then (st) ∈ Λβ.
• If x is a variable of type α and s ∈ Λβ, then (λx.s) ∈ Λα→β.
• If s, t ∈ Λo, then (s→ t) ∈ Λo.
• If x is a variable of type α and s ∈ Λo, then (∀x.s) ∈ Λo.
• If s, t ∈ Λα, then (s = t) ∈ Λo.

We use common conventions to omit parentheses. We define Fs to be the free
variables of s and for sets A of terms we define FA to be

⋃
s∈AFs. We assume a

capture avoiding substition sxt is defined. Terms of type o are called propositions .
We define ⊥ to be the proposition ∀p.p where x is a variable of type o.
We define =̇α ∈ Λα→α→o to be Leibniz equality: λxy.∀p.px → py. We will usually

write s=̇t for (=̇αs)t. It is redundant to include equality as a primitive term constructor
since we can always use Leibniz equality. Indeed Leibniz equality will still play a role.
However (in the formalization at least) working with primitive equality is sometimes
easier than working with Leibniz equality.
Before giving the proof calculus, we briefly describe some of the complications that

arise when defining simply typed λ-terms using de Bruijn indices. In the first clause
above, we say each variable x of type α is a term of type α. However, if we use de
Bruijn indices, we will have natural numbers n not associated with any type. This
is easy enough to remedy by having an environment e : N → T . That is, instead
of defining Λα as above, we define Λeα.

2 The e changes in some of the clauses of the
definition. For example, for the λ binder we would have a clause that reads:

• If s ∈ Λα::eβ , then (λαs) ∈ Λeα→β.

In this clause, (α :: e) means the function sending 0 to α and sending n + 1 to e(n).
Making this formal definition of simply typed terms is not difficult. However, defining
substitution and shifting (a special case of renaming) is tricky. It is not clear if the tech-
niques used by Autosubst can be applied in an example like this with dependent types,
but we leave this question for others to investigate. The author defined substitution
and shifting by hand and proved the appropriate properties.3

Since our focus is not on de Bruijn indices we return the informal version using names.
We define a (βη) conversion relation on terms of the same type in two steps. We first
define s⇒1t if s β or η reduces to t in one step. We then define s≈t to be the reflexive,
symmetric, transitive closure of ⇒1.

4

2See stm in the formalization.
3See stmshift var, stmshift aux, stmshift, stmparsubst and stmsubst in the formalization.

Also, stmshift var eq match eq for an example of a lemma which was needed but may not hold for
some definitions of shifting.

4See conv 1 and conv in the formalization.

SEMANTICS FOR IHOL SUPPORTING HOAS 3

Γ ⊢ s
s ∈ Γ

Γ, s ⊢ t

Γ ⊢ s→ t

Γ ⊢ s→ t Γ ⊢ s

Γ ⊢ t

Γ ⊢ s

Γ ⊢ ∀x.s
x ∈ Vα \ FΓ

Γ ⊢ ∀x.s

Γ ⊢ sxt
x ∈ Vα, t ∈ Λα

Γ ⊢ s = s

Γ ⊢ s = t

Γ ⊢ s=̇t

Γ ⊢ s

Γ ⊢ t
s≈t

Γ, s ⊢ t Γ, t ⊢ s

Γ ⊢ s = t
s, t ∈ Λo ξ

Γ ⊢ s = t

Γ ⊢ (λx.s) = (λx.t)
x ∈ Vα \ FΓ and s, t ∈ Λβ

Γ ⊢ (As1t) = (As2t)

Γ ⊢ s1 = s2

Γ ⊢ (Ast2) = (Ast2)

Γ ⊢ t1 = t2

Γ ⊢ (Ls) = (Lt)

Γ ⊢ s = t

Γ ⊢ (Ast) = (Lu)

Γ ⊢ ⊥

Figure 1. Proof Calculus

We define Γ ⊢ s where Γ is a set of propositions and s is a proposition by the
rules given in Figure 1.5 Most of these are the usual rules of natural deduction. For
equality we use reflexivity as the introduction rule and use Leibniz equality to give
the elimination rule. The conversion rule ensures the logic respects βη-equivalence. In
addition we have propositional extensionality and ξ-extensionality rules. (It is well-
known that η combined with ξ give full functional extensionality [3].) We then have
rules for reasoning with higher-order abstract syntax. These allow us to infer that the
components of untyped applications are equal if two applications are equal. The most
surprising rule states that if two untyped λ-abstractions are equal, then their bodies
(which have type ι → ι) are equal. Finally untyped applications are different from
untyped λ-abstractions.
It is not clear if this logic has a model at all. Since untyped applications are different

from untyped λ-abstractions, there is no trivial model with ι interpreted as a singleton.
However, the rule for L implies L is an injection from the function type ι → ι to ι.
Taken together, we conclude there is no standard set-theoretic model since this would
contradict a form of Cantor’s Theorem.
We will give an M -set model. This model will have the added benefit that the

intepretation of ι consists precisely of untyped λ-terms. When we write closed terms
of type ι using A and L, they will be interpreted as the corresponding closed untyped
λ-terms. For example, the interpretation of the simply typed term

A(L(λx.Axx))(L(λx.Axx))

will be the untyped λ-term

(λ(00))(λ(00)).

5In the formalization see nd.

4 CHAD E. BROWN

3. Untyped Lambda Terms and the Monoid

The set Λ̂ of untyped λ terms are given by the grammar

s, t ::= n|(st)|(λs)

where n ranges over natural numbers (de Bruijn indices [5]). We use Autosubst [11] in
Coq [9] to formalize untyped λ-terms. Autosubst provides a definition of a substitution
operation for free and also gives many properties. Autosubst also gives tactics asimpl
and autosubst which were used repeatedly to solve goals in the formal proofs.
Substitutions (σ, τ) are functions from natural numbers to Λ̂. Let M be the set of

all substititutions. The substitution ε which maps each n to the term n is called the
identity substitution. Given σ, τ ∈ M , we can compose σ and τ to form στ by taking
each n to the term τ(σn) (where the application of τ to σn is via the substitution
operation). Using functional extensionality it is easy to see that this operation on
substitutions is associative. Also, ε is a two-sided identity for the operation. Hence M
is a monoid. Furthermore, Autosubst builds in these facts so that it is easy to make
use of the monoid properties in the formalization.
An M -set is a set A with an operation taking a ∈ A and σ ∈ M to an element

aσ ∈ A. This operation is called the action of the M -set. The action must satisfy two
properties: aε = a for all a ∈ A and (aσ)τ = a(στ) for all a ∈ A and σ, τ ∈M .
We will interpret simple types as M -sets.
A very easy example of anM -set is Λ̂ itself. We take the action to be the substitution

operation. Indeed this will be the interpretation of ι.
In the formalization we define a record type ofM -sets consisting of a type of elements

with a partial equivalence relation (per) on it (representing the set A with its intended
notion of equality) and an action respecting the per and satisfying the two properties
above.6

4. The Model

We define an M -set Dα for each α ∈ T . As already mentioned we define Dι to be
the M -set of untyped λ-terms Λ̂ with the action given by the substitution operation.7

We have many options for interpreting the type o of propositions. In [4] we considered
two possibilities giving classical (nonextensional) models: Do could be the two element
set with a trivial action or Do could be the power set ofM with an action taking Xσ to
{τ |στ ∈ X}. Here we take Do to be a Heyting algebra given by a subset of the power
set of M . This Heyting algebra corresponds to how truth values are interpreted in a
presheaf topos.
To be specific we take Do to be the set of right ideals of M . A set X ⊆M is a right

ideal if στ ∈ X whenever σ ∈ X and τ ∈M . Note that two specific right ideals are the
empty set and M . In fact, arbitrary intersections and arbitrary unions of right ideals
are right ideals. This is enough to know the right ideals form a Heyting algebra. The

6See Mset in the formalization.
7See Di in the formalization.

SEMANTICS FOR IHOL SUPPORTING HOAS 5

action on Do is given by taking Xσ to be {τ |στ ∈ X}. It is easy to see that Xσ is a
right ideal: If στ ∈ X and µ ∈M , then στµ ∈ X and so τµ ∈ Xσ.8

Finally we interpret function types.9 Assume Dα and Dβ are M -sets. We take Dα→β

to be the M -set

{f :M ×Dα → Dβ|∀στ ∈M.∀a ∈ Dα.f(σ, a)τ = f(στ, aτ)}.

The action is given by taking fµ to be fµ(σ, a) = f(µσ, a).
In the formalization this interpretation of types is defined as a recursive function

tpinterp.
We next need to interpret the simply typed terms to be elements of the corresponding

M -set. Two specific terms we will need to interpret are the constants A and L.
Let Â be the function given by Â(σ, s)(τ, t) = ((sτ)t). It is easy to check Â is in

Dι→ι→ι and Âµ = Â.
Let S ∈M be the substitution taking each natural number n to the de Bruijn index

n + 1. We take L̂ to be the function taking L̂(σ, f) = (λf(S, 0)) for each σ ∈ M and

f ∈ Dι→ι. It is easy to check L̂ ∈ D(ι→ι)→ι and L̂µ = L̂.
In order to prove soundness of the proof system for this interpretation of L we will need

to know the function sending f ∈ Dι→ι to L̂(ε, f) is injective. We argue this fact here.

Let f, g ∈ Dι→ι be given. Suppose L̂(ε, f) = L̂(ε, g). This means (λf(S, 0)) = (λg(S, 0)).
This means f(S, 0) and g(S, 0) are the same untyped λ-term. We will prove f = g. Let
σ ∈ M and s ∈ Dι. Let s :: σ be the substitution sending 0 to s and n + 1 to σ(n).
Since f, g ∈ Dι→ι we know

f(σ, s) = f(S(s :: σ), 0(s :: σ)) = f(S, 0)(s :: σ) = g(S, 0)(s :: σ)

= g(S(s :: σ), 0(s :: σ)) = g(σ, s)

as desired.
We are now in a position to define the evaluation function for simply typed terms.

Since we need to interpret variables, the evaluation function will depend on an as-
signment sending each variable x ∈ Vα to an element of Dα. As in [4] the evaluation
function also depends on an element of the monoid M . Given an assignment ϕ and
substitution σ ∈M , we let ϕσ be the assignment taking x to ϕ(x)σ (i.e., we can act on
assignments). Also, given an assignment ϕ, a variable x ∈ Vα and an element a ∈ Dα,
we let ϕxa be the substitution which sends x to a and each other y to ϕ(y).
We will denote the evaluation function by JsKσϕ where s ∈ Λα, σ ∈ M and ϕ is an

assignment.10 We define it by giving the following equations.

JxKσϕ = ϕx

JAKσϕ = Â

JLKσϕ = L̂

JstKσϕ = JsKσϕ(ε, JtK
σ
ϕ)

8See Do in the formalization.
9See Dar in the formalization.
10See eval in the formalization. Note that the fact that we used Church style typing allows us to

define eval as a total function.

6 CHAD E. BROWN

Jλx.sKσϕ(τ, a) = JsKστ(ϕτ)xa

Js→ tKσϕ =
⋃

{Z ∈ Do|∀mu ∈M.µ ∈ Z → ε ∈ JsKσµϕµ → ε ∈ JtKσµϕµ}

J∀x.sKσϕ = {τ ∈M |∀µ ∈M.∀a ∈ Dα.ε ∈ JsKστµ(ϕτµ)xa
} where x ∈ Vα

Js = tKσϕ = {τ ∈M |JsKστϕτ = JtKστϕτ}

By induction on s one can prove the following theorem.11

Theorem 4.1. JsKσϕτ = JsKστϕτ .

Using Theorem 4.1 it becomes clear that we have alternative characterizations of
when the interpretation of an implication or equation.

Lemma 4.1. Let s, t ∈ Λo, σ, τ ∈ M and ϕ be an assignment. τ is in Js → tKσϕ if and

only if for all µ ∈M τµ ∈ JsKσϕ implies τµ ∈ JtKσϕ.

Lemma 4.2. Let s, t ∈ Λα, σ, τ ∈ M and ϕ be an assignment. τ is in Js = tKσϕ if and

only if JsKσϕτ = JtKσϕτ .

Given Lemmas 4.1 and 4.2 the reader would be justified in wondering why these
characterizations were not used in the definition of JsKσϕ. Indeed they could be. The
definitions were chosen to look similar to the definition in the universal quantification
case. It is possible that there is a characterization of the universal quantifier case
similar to Lemmas 4.1 and 4.2. If this is the case, then an alternative definition of the
evaluation function would be justified. We leave investigation of this to future work.
The following results are easy to prove and justify soundness of conversion.

Lemma 4.3. Jsxt K
σ
ϕ = JsKσϕx

JtKσϕ

Lemma 4.4. J(λx.s)tKσϕ = Jsxt K
σ
ϕ

Lemma 4.5. If x 6∈ Fs, then Jλx.sxKσϕ = JsKσϕ

Lemma 4.6. If s⇒t, then JsKσϕ = JtKσϕ

Lemma 4.7. If s≈t, then JsKσϕ = JtKσϕ

Before proceeding to the main result, we prove a lemma about Leibniz equality.12

Lemma 4.8. Let a, b ∈ Dα be given. If aτ = bτ , then τ ∈ J=̇αK
σ
ϕ(ε, a)(ε, b).

Proof. Suppose aτ = bτ . We need to prove τ ∈ Jλxy.∀p.px → pyKσϕ(ε, a)(ε, b). By
definition we know

Jλxy.∀p.px→ pyKσϕ(ε, a)(ε, b) = J∀p.px→ pyKσψ

where ψ is ((φ)xa)
y
b . Hence we need to prove τ ∈ J∀p.px → pyKσψ. Let µ ∈ M and

P ∈ Dα→o be given. We need to prove ε ∈ Jpx→ pyKστµ
(ψτµ)p

P

. We prove this by applying

11See eval thm1 in the formalization. Actually eval thm1 proves two conjuncts. The first conjunct
states that the evaluation function gives an element in the domain of the per and the second conjunct
corresponds to Theorem 4.1. In the informal presentation, we simply use equality instead of a per so
the theorem is simpler.

12See eval SLeibEq I in the formalization.

SEMANTICS FOR IHOL SUPPORTING HOAS 7

Lemma 4.1. Let ν ∈ M be given and assume ν ∈ JpxKστµ
(ψτµ)p

P

. That is, we assume

ν ∈ P (ε, aτµ). We must prove ν ∈ JpyKστµ
(ψτµ)p

P

. That is, we must prove ν ∈ P (ε, bτµ).

Since aτ = bτ we are done. �

The main result is soundness.13

Theorem 4.2. If Γ ⊢ s and τ ∈ JuKσϕ for every u ∈ Γ, then τ ∈ JsKσϕ.

Proof. We prove this by induction on the derivation of Γ ⊢ s. In each case we assume
we have a σ, τ and ϕ such that τ ∈ JuKσϕ for every u ∈ Γ. The inductive hypothesis
can be applied to the premises of the rule (possibly changing σ, τ and ϕ) and we must
prove τ ∈ JsKσϕ.
Soundness of the hypothesis rule is clear. Soundness of the conversion rule fol-

lows from Lemma 4.7. For the implication introduction and elimination rules we use
Lemma 4.1.
For the introduction rule for the universal quantifier suppose x is a variable of type

α not free in Γ. We must prove τ ∈ J∀x.sKσϕ. By definition this means we need to prove
ε ∈ JsKστµ(ϕτµ)xa

for all µ ∈ M and a ∈ Dα. Let µ ∈ M and a ∈ Dα be given. We will

apply the inductive hypothesis with στµ, ε and (ϕτµ)xa. Since τ ∈ JuKσϕ we also know
τµ ∈ JuKσϕ for each u ∈ Γ. Using Theorem 4.1 we know ε ∈ JuKστµϕτµ for each u ∈ Γ. Since

x is not free in Γ we also know ε ∈ JuKστµ(ϕτµ)xa
for each u ∈ Γ.14 Hence the inductive

hypothesis applies and we have ε ∈ JsKστµ(ϕτµ)xa
as desired.

We now consider the elimination rule for the universal quantifier. The inductive
hypothesis gives τ ∈ J∀x.sKσϕ. Hence ε ∈ JsKστµ(ϕτµ)xa

for every µ ∈ M and a ∈ Dα.

In particular, ε ∈ JsKστε(ϕτε)x
JtKστ

ϕτ

. That is, ε ∈ JsKστ(ϕτ)x
JtKστ

ϕτ

. Applying Theorem 4.1 and

Lemma 4.3 we have

JsKστ(ϕτ)x
JtKστ

ϕτ

= JsKστ(ϕx
JtKσϕ

)τ = JsKσ(ϕx
JtKσϕ

)τ = Jsxt K
σ
ϕτ.

Hence ε ∈ Jsxt K
σ
ϕτ . That is, τ ∈ Jsxt K

σ
ϕ as desired.

Soundness of the equality introduction rule follows immediately from Lemma 4.2. For
the equality elimination rule, suppose we have τ ∈ Js = tKσϕ by inductive hypothesis.
We need to prove τ ∈ Js=̇tKσϕ. By Lemma 4.2 we know JsKσϕτ = JtKσϕτ . By Lemma 4.8
we know τ ∈ Js=̇tKσϕ as desired.
Next we turn to the extensionality rules. For propositional extensionality, we need to

prove τ ∈ Js = tKσϕ. By Lemma 4.2 it is enough to prove the two right ideals JsKσϕτ and
JtKσϕτ are equal. Suppose µ ∈ JsKσϕτ . That is, τµ ∈ JsKσϕ. We can apply the inductive
hypothesis with the first premise with Γ, s, τµ, σ and ϕ to conclude τµ ∈ JtKσϕ. Hence
µ ∈ JtKσϕτ as desired. Similarly, if µ ∈ JtKσϕτ , then we can use the inductive hypothesis
given by the second premise of the rule to obtain µ ∈ JsKσϕτ .
We now consider the ξ rule. Let x be a variable of type α not free in Γ. We need

to prove τJ(λx.s) = (λx.t)Kσϕ. Applying Lemma 4.2 we need to prove the two functions

13See nd sound in the formalization.
14We need a coincidence result to justify this step. We omit this detail here since the formalization

with de Bruijn indices does not require an explicit coincidence result.

8 CHAD E. BROWN

Jλx.sKσϕτ and Jλx.tKσϕτ are equal. Let µ ∈M and a ∈ Dα be given. Recalling the action
on functions, we compute

(Jλx.sKσϕτ)(µ, a) = Jλx.sKσϕ(τµ, a) = JsKστµ(ϕτµ)xa

and

(Jλx.tKσϕτ)(µ, a) = Jλx.tKσϕ(τµ, a) = JtKστµ(ϕτµ)xa
.

Applying the inductive hypothesis with στµ, ε and (ϕτµ)xa we have ε ∈ Js = tKστµ(ϕτµ)xa
.

Using Lemma 4.2 we conclude JsKστµ(ϕτµ)xa
= JtKστµ(ϕτµ)xa

as desired.

Finally we consider the rules for A and L.
We first argue soundness of the two rules giving injectivity of A. In the first rule the

inductive hypothesis gives τ ∈ J(As1t1) = (As2t2)K
σ
ϕ. By definition we have

((Js1K
στ
ϕτ)(JtK

στ
ϕτ)) = J(As1t)K

στ
ϕτ = J(As2t)K

στ
ϕτ = ((Js2K

στ
ϕτ)(JtK

στ
ϕτ)).

The only way these two untyped λ-terms, both of them applications, can be equal is if
both components are equal. Hence we know

Js1K
στ
ϕτ = Js2K

στ
ϕτ .

We conclude τ ∈ Js1 = s2K
σ
ϕ as desired. The proof for the second rule is analogous.

Next we argue soundness of the rule stating that terms given by A and L are never
equal. The inductive hypothesis gives

((JsKστϕτ)(JtK
στ
ϕτ)) = J(Ast)Kστϕτ = JLuKστϕτ = (λ(JuKστϕτ (S, 0))).

That is, an untyped application is equal to an untyped abstraction. This is impossible,
and so there cannot be a σ, τ and ϕ such that τ ∈ JuKσϕ for every u ∈ Γ.
Earlier we previewed soundness of the rule giving injectivity of L. We repeat this

argument in the current context. Applying the inductive hypothesis we know τ ∈
J(Ls) = (Lt)Kσϕ. By definition we have

(λ(JsKστϕτ (S, 0))) = JLsKστϕτ = JLtKστϕτ = (λ(JtKστϕτ (S, 0)))

and so

JsKστϕτ (S, 0) = JtKστϕτ (S, 0).

We need to prove τ ∈ Js = tKσϕ. That is, we need to prove JsKστϕτ = JtKστϕτ . Recall that
JsKστϕτ and JtKστϕτ are functions in Dι→ι so it is enough to prove they are equal as functions.
Let µ ∈ M and u ∈ Dι be given. Let (u :: µ) ∈ M be the substitution taking 0 to u
and n+ 1 to µ(n). We have

JsKστϕτ (µ, u) = JsKστϕτ (S, 0)(u :: µ) = JtKστϕτ (S, 0)(u :: µ) = JtKστϕτ (µ, u)

as desired. �

SEMANTICS FOR IHOL SUPPORTING HOAS 9

5. Conclusion

We have given an intuitionistic extensional higher-order logic supporting reasoning
about untyped λ-terms using higher-order abstract syntax. The logic currently only
builds in the fact that applications and abstractions are injective and disjoint. A pos-
sible extension would be to include some appropriate induction principle. Candidate
induction principles can be found in [8].
On the one hand, the formalization in Coq was made much easier by the use of

Autosubst. On the other hand, the use of dependent types to represent simply typed
terms in Church-style meant that the current version of Autosubst could not be used
at this level.

References

[1] Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. Journal of Functional
Programming 1(4), 375–416 (1991)

[2] Barendregt, H.: The Lambda Calculus: its Syntax and Semantics, revised edn. North-Holland,
Amsterdam (1984)

[3] Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher-order semantics and extensionality. The
Journal of Symbolic Logic 69, 1027–1088 (2004)

[4] Brown, C.E.: M-set models. In: Reasoning in Simple Type Theory: Festschrift in Honor of Peter
B. Andrews on His 70th Birthday. College Publications (2008)

[5] de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae (Pro-
ceedings) 34(5), 381–392 (1972)

[6] Church, A.: A formulation of the simple theory of types. The Journal of Symbolic Logic 5, 56–68
(1940)

[7] Dowek, G., Hardin, T., Kirchner, C.: Higher order unification via explicit substitutions. Informa-
tion and Computation 157(1–2), 183 – 235 (2000)

[8] Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Proceedings of the 14th
Annual IEEE Symposium on Logic in Computer Science, LICS ’99, pp. 204–213. IEEE Computer
Society, Washington, DC, USA (1999)

[9] The Coq development team: The Coq proof assistant reference manual. LogiCal Project (2004).
URL http://coq.inria.fr. Version 8.0

[10] Pfenning, F., Elliot, C.: Higher-order abstract syntax. SIGPLAN Notices 23(7), 199–208 (1988)
[11] Schäfer, S., Tebbi, T.: Autosubst. URL https://www.ps.uni-saarland.de/autosubst/

[12] Zhang, X.: Using LEO-II to prove properties of an explicit substitution M-set model. Bachelor’s
thesis, Saarland University (2008)

http://coq.inria.fr
https://www.ps.uni-saarland.de/autosubst/

	1. Introduction
	2. HOL with HOAS
	3. Untyped Lambda Terms and the Monoid
	4. The Model
	5. Conclusion
	References

