Let X and Y be given.
Assume H1: In_rec_i_G X Y.
Set R to be the term (λX : setλY : setf : setset, (xX, In_rec_i_G x (f x)) Y = F X f).
Apply (H1 R) to the current goal.
We will prove ∀Z : set, ∀g : setset, (zZ, R z (g z))R Z (F Z g).
Let Z and g be given.
Assume IH: zZ, f : setset, (xz, In_rec_i_G x (f x)) g z = F z f.
We will prove f : setset, (xZ, In_rec_i_G x (f x)) F Z g = F Z f.
We use g to witness the existential quantifier.
Apply andI to the current goal.
Let z be given.
Assume H2: z Z.
Apply (exandE_ii (λf ⇒ xz, In_rec_i_G x (f x)) (λf ⇒ g z = F z f) (IH z H2)) to the current goal.
Let f of type setset be given.
Assume H3: xz, In_rec_i_G x (f x).
Assume H4: g z = F z f.
We will prove In_rec_i_G z (g z).
rewrite the current goal using H4 (from left to right).
We will prove In_rec_i_G z (F z f).
An exact proof term for the current goal is (In_rec_i_G_c z f H3).
Use reflexivity.