Apply In_ind to the current goal.
Let X be given.
Assume IH: xX, ∀y z : set, In_rec_i_G x yIn_rec_i_G x zy = z.
Let Y and Z be given.
Assume H1: In_rec_i_G X Y.
Assume H2: In_rec_i_G X Z.
We will prove Y = Z.
We prove the intermediate claim L1: f : setset, (xX, In_rec_i_G x (f x)) Y = F X f.
An exact proof term for the current goal is (In_rec_i_G_inv X Y H1).
We prove the intermediate claim L2: f : setset, (xX, In_rec_i_G x (f x)) Z = F X f.
An exact proof term for the current goal is (In_rec_i_G_inv X Z H2).
Apply (exandE_ii (λf ⇒ xX, In_rec_i_G x (f x)) (λf ⇒ Y = F X f) L1) to the current goal.
Let g be given.
Assume H3: xX, In_rec_i_G x (g x).
Assume H4: Y = F X g.
Apply (exandE_ii (λf ⇒ xX, In_rec_i_G x (f x)) (λf ⇒ Z = F X f) L2) to the current goal.
Let h be given.
Assume H5: xX, In_rec_i_G x (h x).
Assume H6: Z = F X h.
We will prove Y = Z.
rewrite the current goal using H4 (from left to right).
rewrite the current goal using H6 (from left to right).
We will prove F X g = F X h.
Apply Fr to the current goal.
We will prove xX, g x = h x.
Let x be given.
Assume H7: x X.
An exact proof term for the current goal is (IH x H7 (g x) (h x) (H3 x H7) (H5 x H7)).