Let P be given.
Assume H1: ∀x y z, SNo xSNo ySNo z(uSNoS_ (SNoLev x), P u y z)(vSNoS_ (SNoLev y), P x v z)(wSNoS_ (SNoLev z), P x y w)(uSNoS_ (SNoLev x), vSNoS_ (SNoLev y), P u v z)(uSNoS_ (SNoLev x), wSNoS_ (SNoLev z), P u y w)(vSNoS_ (SNoLev y), wSNoS_ (SNoLev z), P x v w)(uSNoS_ (SNoLev x), vSNoS_ (SNoLev y), wSNoS_ (SNoLev z), P u v w)P x y z.
We prove the intermediate claim L1: ∀α, ordinal α∀β, ordinal β∀γ, ordinal γxSNoS_ α, ySNoS_ β, zSNoS_ γ, P x y z.
Apply ordinal_ind to the current goal.
Let α be given.
Assume Ha: ordinal α.
Assume IHa: δα, ∀β, ordinal β∀γ, ordinal γxSNoS_ δ, ySNoS_ β, zSNoS_ γ, P x y z.
Apply ordinal_ind to the current goal.
Let β be given.
Assume Hb: ordinal β.
Assume IHb: δβ, ∀γ, ordinal γxSNoS_ α, ySNoS_ δ, zSNoS_ γ, P x y z.
Apply ordinal_ind to the current goal.
Let γ be given.
Assume Hc: ordinal γ.
Assume IHc: δγ, xSNoS_ α, ySNoS_ β, zSNoS_ δ, P x y z.
Let x be given.
Assume Hx: x SNoS_ α.
Let y be given.
Assume Hy: y SNoS_ β.
Let z be given.
Assume Hz: z SNoS_ γ.
Apply SNoS_E2 α Ha x Hx to the current goal.
Assume Hx1: SNoLev x α.
Assume Hx2: ordinal (SNoLev x).
Assume Hx3: SNo x.
Assume Hx4: SNo_ (SNoLev x) x.
Apply SNoS_E2 β Hb y Hy to the current goal.
Assume Hy1: SNoLev y β.
Assume Hy2: ordinal (SNoLev y).
Assume Hy3: SNo y.
Assume Hy4: SNo_ (SNoLev y) y.
Apply SNoS_E2 γ Hc z Hz to the current goal.
Assume Hz1: SNoLev z γ.
Assume Hz2: ordinal (SNoLev z).
Assume Hz3: SNo z.
Assume Hz4: SNo_ (SNoLev z) z.
Apply H1 x y z Hx3 Hy3 Hz3 to the current goal.
We will prove uSNoS_ (SNoLev x), P u y z.
Let u be given.
Assume Hu: u SNoS_ (SNoLev x).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 β Hb γ Hc u Hu y Hy z Hz.
We will prove vSNoS_ (SNoLev y), P x v z.
Let v be given.
Assume Hv: v SNoS_ (SNoLev y).
An exact proof term for the current goal is IHb (SNoLev y) Hy1 γ Hc x Hx v Hv z Hz.
We will prove wSNoS_ (SNoLev z), P x y w.
An exact proof term for the current goal is IHc (SNoLev z) Hz1 x Hx y Hy.
We will prove uSNoS_ (SNoLev x), vSNoS_ (SNoLev y), P u v z.
Let u be given.
Assume Hu: u SNoS_ (SNoLev x).
Let v be given.
Assume Hv: v SNoS_ (SNoLev y).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 (SNoLev y) Hy2 γ Hc u Hu v Hv z Hz.
We will prove uSNoS_ (SNoLev x), wSNoS_ (SNoLev z), P u y w.
Let u be given.
Assume Hu: u SNoS_ (SNoLev x).
Let w be given.
Assume Hw: w SNoS_ (SNoLev z).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 β Hb (SNoLev z) Hz2 u Hu y Hy w Hw.
We will prove vSNoS_ (SNoLev y), wSNoS_ (SNoLev z), P x v w.
Let v be given.
Assume Hv: v SNoS_ (SNoLev y).
Let w be given.
Assume Hw: w SNoS_ (SNoLev z).
An exact proof term for the current goal is IHb (SNoLev y) Hy1 (SNoLev z) Hz2 x Hx v Hv w Hw.
Let u be given.
Assume Hu: u SNoS_ (SNoLev x).
Let v be given.
Assume Hv: v SNoS_ (SNoLev y).
Let w be given.
Assume Hw: w SNoS_ (SNoLev z).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 (SNoLev y) Hy2 (SNoLev z) Hz2 u Hu v Hv w Hw.
An exact proof term for the current goal is SNo_ordinal_ind3 P L1.