Let lambda be given.
Assume Hl1 Hl2.
Let L be given.
Assume HL.
Let R be given.
Assume HR HLR.
We prove the intermediate claim L1: xL, SNoLev x lambda.
Let x be given.
Assume Hx.
Apply SNoS_E2 lambda Hl1 x (HL x Hx) to the current goal.
Assume H _ _ _.
An exact proof term for the current goal is H.
We prove the intermediate claim L2: yR, SNoLev y lambda.
Let y be given.
Assume Hy.
Apply SNoS_E2 lambda Hl1 y (HR y Hy) to the current goal.
Assume H _ _ _.
An exact proof term for the current goal is H.
We prove the intermediate claim L3: ordinal ((xLordsucc (SNoLev x)) (yRordsucc (SNoLev y))).
Apply ordinal_binunion to the current goal.
Apply ordinal_famunion to the current goal.
Let x be given.
Assume Hx.
Apply SNoS_E2 lambda Hl1 x (HL x Hx) to the current goal.
Assume _ H _ _.
We will prove ordinal (ordsucc (SNoLev x)).
Apply ordinal_ordsucc to the current goal.
We will prove ordinal (SNoLev x).
An exact proof term for the current goal is H.
Apply ordinal_famunion to the current goal.
Let y be given.
Assume Hy.
Apply SNoS_E2 lambda Hl1 y (HR y Hy) to the current goal.
Assume _ H _ _.
We will prove ordinal (ordsucc (SNoLev y)).
Apply ordinal_ordsucc to the current goal.
We will prove ordinal (SNoLev y).
An exact proof term for the current goal is H.
We prove the intermediate claim L4: ordinal (ordsucc lambda).
Apply ordinal_ordsucc to the current goal.
An exact proof term for the current goal is Hl1.
We prove the intermediate claim L5: ordsucc ((xLordsucc (SNoLev x)) (yRordsucc (SNoLev y))) ordsucc lambda.
Apply ordinal_ordsucc_In_Subq to the current goal.
We will prove ordinal (ordsucc lambda).
An exact proof term for the current goal is L4.
We will prove ((xLordsucc (SNoLev x)) (yRordsucc (SNoLev y))) ordsucc lambda.
Apply ordinal_In_Or_Subq ((xLordsucc (SNoLev x)) (yRordsucc (SNoLev y))) (ordsucc lambda) L3 L4 to the current goal.
Assume H1.
An exact proof term for the current goal is H1.
Assume H1: ordsucc lambda ((xLordsucc (SNoLev x)) (yRordsucc (SNoLev y))).
We will prove False.
Apply binunionE (xLordsucc (SNoLev x)) (yRordsucc (SNoLev y)) lambda (H1 lambda (ordsuccI2 lambda)) to the current goal.
Assume H2: lambda xLordsucc (SNoLev x).
Apply famunionE_impred L (λx ⇒ ordsucc (SNoLev x)) lambda H2 to the current goal.
Let x be given.
Assume Hx: x L.
Assume H3: lambda ordsucc (SNoLev x).
Apply In_no2cycle lambda (ordsucc (SNoLev x)) H3 to the current goal.
We will prove ordsucc (SNoLev x) lambda.
Apply Hl2 to the current goal.
An exact proof term for the current goal is L1 x Hx.
Assume H2: lambda yRordsucc (SNoLev y).
Apply famunionE_impred R (λy ⇒ ordsucc (SNoLev y)) lambda H2 to the current goal.
Let y be given.
Assume Hy: y R.
Assume H3: lambda ordsucc (SNoLev y).
Apply In_no2cycle lambda (ordsucc (SNoLev y)) H3 to the current goal.
We will prove ordsucc (SNoLev y) lambda.
Apply Hl2 to the current goal.
An exact proof term for the current goal is L2 y Hy.
Apply SNoCutP_SNoCut_impred L R HLR to the current goal.
Assume H1: SNo (SNoCut L R).
Assume H2: SNoLev (SNoCut L R) ordsucc ((xLordsucc (SNoLev x)) (yRordsucc (SNoLev y))).
Assume _ _ _.
An exact proof term for the current goal is L5 (SNoLev (SNoCut L R)) H2.