Apply nat_complete_ind to the current goal.
Let n be given.
Assume Hn: nat_p n.
Assume IHn: mn, (ordsucc m) = m.
We will prove (ordsucc n) = n.
Apply set_ext to the current goal.
Let m be given.
Assume Hm: m (ordsucc n).
Apply (UnionE_impred (ordsucc n) m Hm) to the current goal.
Let k be given.
Assume H1: m k.
Assume H2: k ordsucc n.
We will prove m n.
An exact proof term for the current goal is nat_ordsucc_trans n Hn k H2 m H1.
Let m be given.
Assume Hm: m n.
We will prove m (ordsucc n).
Apply (UnionI (ordsucc n) m n) to the current goal.
An exact proof term for the current goal is Hm.
An exact proof term for the current goal is (ordsuccI2 n).