Let X, Y and z be given.
Assume H1: z xX, Y x.
We prove the intermediate claim L1: xX, z {pair x y|yY x}.
An exact proof term for the current goal is (famunionE X (λx ⇒ {pair x y|yY x}) z H1).
Apply (exandE_i (λx ⇒ x X) (λx ⇒ z {pair x y|yY x}) L1) to the current goal.
Let x be given.
Assume H2: x X.
Assume H3: z {pair x y|yY x}.
Apply (ReplE_impred (Y x) (pair x) z H3) to the current goal.
Let y be given.
Assume H4: y Y x.
Assume H5: z = pair x y.
rewrite the current goal using H5 (from left to right).
We will prove pair (proj0 (pair x y)) (proj1 (pair x y)) = pair x y proj0 (pair x y) X proj1 (pair x y) Y (proj0 (pair x y)).
rewrite the current goal using proj0_pair_eq (from left to right).
We will prove pair x (proj1 (pair x y)) = pair x y x X proj1 (pair x y) Y x.
rewrite the current goal using proj1_pair_eq (from left to right).
We will prove pair x y = pair x y x X y Y x.
Apply and3I to the current goal.
We will prove pair x y = pair x y.
Use reflexivity.
We will prove x X.
An exact proof term for the current goal is H2.
We will prove y Y x.
An exact proof term for the current goal is H4.