Let X, Y and f be given.
Assume H1: uf, pair_p u u 0 X.
Assume H2: xX, f x Y x.
We will prove f {f𝒫 (xX, (Y x))|xX, f x Y x}.
Apply SepI to the current goal.
We will prove f 𝒫 (xX, (Y x)).
Apply PowerI to the current goal.
We will prove f xX, (Y x).
Let z be given.
Assume Hz: z f.
We will prove z xX, (Y x).
Apply (H1 z Hz) to the current goal.
Assume H3: pair (z 0) (z 1) = z.
Assume H4: z 0 X.
rewrite the current goal using H3 (from right to left).
We will prove pair (z 0) (z 1) xX, (Y x).
Apply pair_Sigma to the current goal.
We will prove z 0 X.
An exact proof term for the current goal is H4.
We will prove z 1 (Y (z 0)).
Apply (UnionI (Y (z 0)) (z 1) (f (z 0))) to the current goal.
We will prove z 1 f (z 0).
Apply apI to the current goal.
We will prove pair (z 0) (z 1) f.
rewrite the current goal using H3 (from left to right).
An exact proof term for the current goal is Hz.
We will prove f (z 0) Y (z 0).
An exact proof term for the current goal is (H2 (z 0) H4).
We will prove xX, f x Y x.
An exact proof term for the current goal is H2.