We will
prove f ∈ 𝒫 (∑x ∈ X, ⋃ (Y x)).
Apply PowerI to the current goal.
We will
prove f ⊆ ∑x ∈ X, ⋃ (Y x).
Let z be given.
We will
prove z ∈ ∑x ∈ X, ⋃ (Y x).
Apply (H1 z Hz) to the current goal.
rewrite the current goal using H3 (from right to left).
We will
prove pair (z 0) (z 1) ∈ ∑x ∈ X, ⋃ (Y x).
An exact proof term for the current goal is H4.
We will
prove z 1 ∈ ⋃ (Y (z 0)).
Apply (UnionI (Y (z 0)) (z 1) (f (z 0))) to the current goal.
We will
prove z 1 ∈ f (z 0).
Apply apI to the current goal.
We will
prove pair (z 0) (z 1) ∈ f.
rewrite the current goal using H3 (from left to right).
An exact proof term for the current goal is Hz.
We will
prove f (z 0) ∈ Y (z 0).
An
exact proof term for the current goal is
(H2 (z 0) H4).