Let R be given.
Assume H1: x, (y : setprop, R x y) (∀y z : setprop, R x yR x zy = z).
We prove the intermediate claim L1: (y : setprop, R (DescrR_i_io_1 R) y) (∀y z : setprop, R (DescrR_i_io_1 R) yR (DescrR_i_io_1 R) zy = z).
An exact proof term for the current goal is (Eps_i_ex (λx ⇒ (y : setprop, R x y) (∀y z : setprop, R x yR x zy = z)) H1).
Apply L1 to the current goal.
Assume H2 H3.
An exact proof term for the current goal is Descr_Vo1_prop (λy ⇒ R (DescrR_i_io_1 R) y) H2 H3.