Let x be given.
Assume Hx: SNo x.
Set alpha to be the term SNoLev x.
We prove the intermediate claim La: ordinal α.
An exact proof term for the current goal is SNoLev_ordinal x Hx.
We will prove SNoEq_ α (SNo_extend0 x) x.
Set p to be the term λβ ⇒ β x of type setprop.
Set q to be the term λβ ⇒ β x β α of type setprop.
We will prove PNoEq_ α (λβ ⇒ β PSNo (ordsucc α) q) p.
Apply PNoEq_tra_ α (λβ ⇒ β PSNo (ordsucc α) q) q p to the current goal.
We will prove PNoEq_ α (λβ ⇒ β PSNo (ordsucc α) q) q.
Apply PNoEq_antimon_ (λβ ⇒ β PSNo (ordsucc α) q) q (ordsucc α) (ordinal_ordsucc α La) α (ordsuccI2 α) to the current goal.
We will prove PNoEq_ (ordsucc α) (λβ ⇒ β PSNo (ordsucc α) q) q.
An exact proof term for the current goal is PNoEq_PSNo (ordsucc α) (ordinal_ordsucc α La) q.
We will prove PNoEq_ α q p.
Apply PNoEq_sym_ to the current goal.
An exact proof term for the current goal is PNo_extend0_eq α p.