Let w be given.
Assume Hw: SNo w.
Let f be given.
We prove the intermediate claim L1: ∀z, SNo z∀g h : setset, (uSNoS_ (SNoLev z), g u = h u)G w f z g = G w f z h.
Let z be given.
Assume Hz.
Let g and h be given.
Assume Hgh.
We prove the intermediate claim L1a: xSNoS_ (SNoLev w), f x = f x.
Let x be given.
Assume Hx.
Use reflexivity.
An exact proof term for the current goal is SNo_rec2_G_prop w Hw f f L1a z Hz g h Hgh.
An exact proof term for the current goal is SNo_rec_i_eq (G w f) L1.