Let w be given.
Assume Hw: SNo w.
Let z be given.
Assume Hz: SNo z.
We will prove SNo_rec2 w z = F w z SNo_rec2.
We will prove SNo_rec_ii H w z = F w z SNo_rec2.
We prove the intermediate claim L1: ∀w, SNo w∀g h : setsetset, (xSNoS_ (SNoLev w), g x = h x)H w g = H w h.
Let w be given.
Assume Hw: SNo w.
Let g and h be given.
Assume Hgh: xSNoS_ (SNoLev w), g x = h x.
We will prove H w g = H w h.
We will prove (λz : setif SNo z then SNo_rec_i (G w g) z else Empty) = (λz : setif SNo z then SNo_rec_i (G w h) z else Empty).
Apply func_ext set set to the current goal.
Let z be given.
We will prove (if SNo z then SNo_rec_i (G w g) z else Empty) = (if SNo z then SNo_rec_i (G w h) z else Empty).
Apply xm (SNo z) to the current goal.
Assume Hz: SNo z.
rewrite the current goal using If_i_1 (SNo z) (SNo_rec_i (G w g) z) Empty Hz (from left to right).
rewrite the current goal using If_i_1 (SNo z) (SNo_rec_i (G w h) z) Empty Hz (from left to right).
We will prove SNo_rec_i (G w g) z = SNo_rec_i (G w h) z.
We prove the intermediate claim L1a: ∀α, ordinal αzSNoS_ α, SNo_rec_i (G w g) z = SNo_rec_i (G w h) z.
Apply ordinal_ind to the current goal.
Let α be given.
Assume Ha: ordinal α.
Assume IH: βα, zSNoS_ β, SNo_rec_i (G w g) z = SNo_rec_i (G w h) z.
Let z be given.
Assume Hz: z SNoS_ α.
Apply SNoS_E2 α Ha z Hz to the current goal.
Assume Hz1: SNoLev z α.
Assume Hz2: ordinal (SNoLev z).
Assume Hz3: SNo z.
Assume Hz4: SNo_ (SNoLev z) z.
We will prove SNo_rec_i (G w g) z = SNo_rec_i (G w h) z.
rewrite the current goal using SNo_rec2_eq_1 w Hw g z Hz3 (from left to right).
rewrite the current goal using SNo_rec2_eq_1 w Hw h z Hz3 (from left to right).
We will prove G w g z (SNo_rec_i (G w g)) = G w h z (SNo_rec_i (G w h)).
Apply SNo_rec2_G_prop w Hw g h Hgh z Hz3 (SNo_rec_i (G w g)) (SNo_rec_i (G w h)) to the current goal.
We will prove ySNoS_ (SNoLev z), SNo_rec_i (G w g) y = SNo_rec_i (G w h) y.
Let y be given.
Assume Hy: y SNoS_ (SNoLev z).
An exact proof term for the current goal is IH (SNoLev z) Hz1 y Hy.
An exact proof term for the current goal is L1a (ordsucc (SNoLev z)) (ordinal_ordsucc (SNoLev z) (SNoLev_ordinal z Hz)) z (SNoS_SNoLev z Hz).
Assume Hz: ¬ SNo z.
rewrite the current goal using If_i_0 (SNo z) (SNo_rec_i (G w h) z) Empty Hz (from left to right).
An exact proof term for the current goal is If_i_0 (SNo z) (SNo_rec_i (G w g) z) Empty Hz.
We prove the intermediate claim L2: H w (SNo_rec_ii H) z = F w z SNo_rec2.
We will prove (if SNo z then SNo_rec_i (G w (SNo_rec_ii H)) z else Empty) = F w z SNo_rec2.
rewrite the current goal using If_i_1 (SNo z) (SNo_rec_i (G w (SNo_rec_ii H)) z) Empty Hz (from left to right).
We will prove SNo_rec_i (G w (SNo_rec_ii H)) z = F w z SNo_rec2.
We will prove SNo_rec_i (G w (SNo_rec_ii H)) z = F w z (SNo_rec_ii H).
rewrite the current goal using SNo_rec2_eq_1 w Hw (SNo_rec_ii H) z Hz (from left to right).
We will prove G w (SNo_rec_ii H) z (SNo_rec_i (G w (SNo_rec_ii H))) = F w z (SNo_rec_ii H).
We will prove F w z (λx y ⇒ if x = w then SNo_rec_i (G w (SNo_rec_ii H)) y else SNo_rec_ii H x y) = F w z (SNo_rec_ii H).
We prove the intermediate claim L2a: xSNoS_ (SNoLev w), ∀y, SNo y(if x = w then SNo_rec_i (G w (SNo_rec_ii H)) y else SNo_rec_ii H x y) = SNo_rec_ii H x y.
Let x be given.
Assume Hx: x SNoS_ (SNoLev w).
Let y be given.
Assume Hy: SNo y.
We prove the intermediate claim Lxw: x w.
An exact proof term for the current goal is SNoS_In_neq w Hw x Hx.
An exact proof term for the current goal is If_i_0 (x = w) (SNo_rec_i (G w (SNo_rec_ii H)) y) (SNo_rec_ii H x y) Lxw.
We prove the intermediate claim L2b: ySNoS_ (SNoLev z), (if w = w then SNo_rec_i (G w (SNo_rec_ii H)) y else SNo_rec_ii H w y) = SNo_rec_ii H w y.
Let y be given.
Assume Hy: y SNoS_ (SNoLev z).
rewrite the current goal using If_i_1 (w = w) (SNo_rec_i (G w (SNo_rec_ii H)) y) (SNo_rec_ii H w y) (λq H ⇒ H) (from left to right).
We prove the intermediate claim Ly: SNo y.
Apply SNoS_E2 (SNoLev z) (SNoLev_ordinal z Hz) y Hy to the current goal.
Assume Hy1: SNoLev y SNoLev z.
Assume Hy2: ordinal (SNoLev y).
Assume Hy3: SNo y.
Assume Hy4: SNo_ (SNoLev y) y.
An exact proof term for the current goal is Hy3.
We will prove SNo_rec_i (G w (SNo_rec_ii H)) y = SNo_rec_ii H w y.
Apply eq_i_tra (SNo_rec_i (G w (SNo_rec_ii H)) y) (H w (SNo_rec_ii H) y) (SNo_rec_ii H w y) to the current goal.
We will prove SNo_rec_i (G w (SNo_rec_ii H)) y = H w (SNo_rec_ii H) y.
We will prove SNo_rec_i (G w (SNo_rec_ii H)) y = if SNo y then (SNo_rec_i (G w (SNo_rec_ii H)) y) else Empty.
Use symmetry.
An exact proof term for the current goal is If_i_1 (SNo y) (SNo_rec_i (G w (SNo_rec_ii H)) y) Empty Ly.
We will prove H w (SNo_rec_ii H) y = SNo_rec_ii H w y.
rewrite the current goal using SNo_rec_ii_eq H L1 w Hw (from left to right).
We will prove H w (SNo_rec_ii H) y = H w (SNo_rec_ii H) y.
An exact proof term for the current goal is (λq H ⇒ H).
An exact proof term for the current goal is Fr w Hw z Hz (λx y ⇒ if x = w then SNo_rec_i (G w (SNo_rec_ii H)) y else SNo_rec_ii H x y) (SNo_rec_ii H) L2a L2b.
We will prove SNo_rec_ii H w z = F w z SNo_rec2.
rewrite the current goal using SNo_rec_ii_eq H L1 w Hw (from left to right).
We will prove H w (SNo_rec_ii H) z = F w z SNo_rec2.
An exact proof term for the current goal is L2.