Let P be given.
Assume H1: ∀x y, SNo xSNo y(wSNoS_ (SNoLev x), P w y)(zSNoS_ (SNoLev y), P x z)(wSNoS_ (SNoLev x), zSNoS_ (SNoLev y), P w z)P x y.
We prove the intermediate claim L1: ∀α, ordinal α∀β, ordinal βxSNoS_ α, ySNoS_ β, P x y.
Apply ordinal_ind to the current goal.
Let α be given.
Assume Ha: ordinal α.
Assume IHa: γα, ∀β, ordinal βxSNoS_ γ, ySNoS_ β, P x y.
Apply ordinal_ind to the current goal.
Let β be given.
Assume Hb: ordinal β.
Assume IHb: δβ, xSNoS_ α, ySNoS_ δ, P x y.
Let x be given.
Assume Hx: x SNoS_ α.
Let y be given.
Assume Hy: y SNoS_ β.
Apply SNoS_E2 α Ha x Hx to the current goal.
Assume Hx1: SNoLev x α.
Assume Hx2: ordinal (SNoLev x).
Assume Hx3: SNo x.
Assume Hx4: SNo_ (SNoLev x) x.
Apply SNoS_E2 β Hb y Hy to the current goal.
Assume Hy1: SNoLev y β.
Assume Hy2: ordinal (SNoLev y).
Assume Hy3: SNo y.
Assume Hy4: SNo_ (SNoLev y) y.
Apply H1 x y Hx3 Hy3 to the current goal.
We will prove wSNoS_ (SNoLev x), P w y.
Let w be given.
Assume Hw: w SNoS_ (SNoLev x).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 β Hb w Hw y Hy.
We will prove zSNoS_ (SNoLev y), P x z.
An exact proof term for the current goal is IHb (SNoLev y) Hy1 x Hx.
We will prove wSNoS_ (SNoLev x), zSNoS_ (SNoLev y), P w z.
Let w be given.
Assume Hw: w SNoS_ (SNoLev x).
Let z be given.
Assume Hz: z SNoS_ (SNoLev y).
An exact proof term for the current goal is IHa (SNoLev x) Hx1 (SNoLev y) Hy2 w Hw z Hz.
An exact proof term for the current goal is SNo_ordinal_ind2 P L1.