Let x, y, z, w, u and v be given.
Assume Hx Hy Hz Hw Hu Hv.
We will
prove x + y + - z < w + u + - v.
We prove the intermediate
claim Lmv:
SNo (- v).
We will
prove x + y < (w + u + - v) + z.
rewrite the current goal using
add_SNo_assoc w u (- v) Hw Hu Lmv (from left to right).
We will
prove x + y < ((w + u) + - v) + z.
We will
prove x + y < ((w + u) + z) + - v.
We will
prove (x + y) + v < (w + u) + z.
rewrite the current goal using
add_SNo_assoc x y v Hx Hy Hv (from right to left).
rewrite the current goal using
add_SNo_assoc w u z Hw Hu Hz (from right to left).
An exact proof term for the current goal is H1.
∎