Let x, y, z and w be given.
Assume Hx Hy Hz Hw.
Use transitivity with
(x + y) * z + (x + y) * w,
(x * z + y * z) + (x + y) * w, and
(x * z + y * z) + (x * w + y * w).
Use f_equal.
An
exact proof term for the current goal is
mul_SNo_distrR x y z Hx Hy Hz.
Use f_equal.
An
exact proof term for the current goal is
mul_SNo_distrR x y w Hx Hy Hw.
We will
prove (x * z + y * z) + (x * w + y * w) = x * z + (x * w + (y * z + y * w)).
We will
prove (x * z + x * w) + (y * z + y * w) = x * z + (x * w + (y * z + y * w)).
Use symmetry.
∎