Let x be given.
Assume H.
Apply H to the current goal.
Let k be given.
Assume H.
Apply H to the current goal.
Assume Hk: k ω.
Assume H.
Apply H to the current goal.
Let m be given.
Assume H.
Apply H to the current goal.
Assume Hm: m int.
Assume Hxkm: x = eps_ k * m.
rewrite the current goal using Hxkm (from left to right).
We will prove eps_ k * m SNoS_ ω.
We prove the intermediate claim L1: nω, eps_ k * n SNoS_ ω.
Let n be given.
Assume Hn: n ω.
We will prove eps_ k * n SNoS_ ω.
An exact proof term for the current goal is nonneg_diadic_rational_p_SNoS_omega k Hk n (omega_nat_p n Hn).
We prove the intermediate claim L2: nω, eps_ k * (- n) SNoS_ ω.
Let n be given.
Assume Hn: n ω.
We will prove eps_ k * (- n) SNoS_ ω.
rewrite the current goal using mul_SNo_minus_distrR (eps_ k) n (SNo_eps_ k Hk) (omega_SNo n Hn) (from left to right).
Apply minus_SNo_SNoS_omega to the current goal.
An exact proof term for the current goal is nonneg_diadic_rational_p_SNoS_omega k Hk n (omega_nat_p n Hn).
An exact proof term for the current goal is int_SNo_cases (λm ⇒ eps_ k * m SNoS_ ω) L1 L2 m Hm.