Let Y, x, X, g and y be given.
Assume Hy.
Let x' be given.
Assume Hx'.
We will prove (1 + (x' + - x) * y) * g x' yY{(1 + (x' + - x) * y) * g x'|x'X}.
Apply famunionI Y (λy ⇒ {(1 + (x' + - x) * y) * g x'|x'X}) y ((1 + (x' + - x) * y) * g x') Hy to the current goal.
We will prove (1 + (x' + - x) * y) * g x' {(1 + (x' + - x) * y) * g x'|x'X}.
An exact proof term for the current goal is ReplI X (λx' ⇒ (1 + (x' + - x) * y) * g x') x' Hx'.