const In : set set prop term iIn = In infix iIn 2000 2000 term Subq = \x:set.\y:set.!z:set.z iIn x -> z iIn y term TransSet = \x:set.!y:set.y iIn x -> Subq y x term ordinal = \x:set.TransSet x & !y:set.y iIn x -> TransSet y term PNoEq_ = \x:set.\p:set prop.\q:set prop.!y:set.y iIn x -> (p y <-> q y) const PNoLt : set (set prop) set (set prop) prop term PNo_strict_lowerbd = \P:set (set prop) prop.\x:set.\p:set prop.!y:set.ordinal y -> !q:set prop.P y q -> PNoLt x p y q term PNo_strict_upperbd = \P:set (set prop) prop.\x:set.\p:set prop.!y:set.ordinal y -> !q:set prop.P y q -> PNoLt y q x p term PNo_strict_imv = \P:set (set prop) prop.\Q:set (set prop) prop.\x:set.\p:set prop.PNo_strict_upperbd P x p & PNo_strict_lowerbd Q x p term PNo_least_rep = \P:set (set prop) prop.\Q:set (set prop) prop.\x:set.\p:set prop.ordinal x & PNo_strict_imv P Q x p & !y:set.y iIn x -> !q:set prop.~ PNo_strict_imv P Q y q axiom ordinal_Hered: !x:set.ordinal x -> !y:set.y iIn x -> ordinal y var P:set (set prop) prop var Q:set (set prop) prop var x:set var p:set prop var q:set prop hyp ordinal x hyp TransSet x hyp !y:set.y iIn x -> !p2:set prop.~ PNo_strict_imv P Q y p2 hyp PNo_strict_upperbd P x p hyp PNo_strict_lowerbd Q x p hyp PNo_strict_upperbd P x q hyp PNo_strict_lowerbd Q x q claim (!y:set.ordinal y -> y iIn x -> (p y <-> q y)) -> !y:set.y iIn x -> (p y <-> q y)