const In : set set prop term iIn = In infix iIn 2000 2000 term nIn = \x:set.\y:set.~ x iIn y const Pi : set (set set) set term setexp = \x:set.\y:set.Pi y \z:set.x const Eps_i : (set prop) set axiom Eps_i_ex: !p:set prop.(?x:set.p x) -> p (Eps_i p) const nat_p : set prop const nat_primrec : set (set set set) set set const SNoS_ : set set const omega : set const SNoLt : set set prop term < = SNoLt infix < 2020 2020 const add_SNo : set set set term + = add_SNo infix + 2281 2280 const eps_ : set set const Empty : set const ordsucc : set set const SNo : set prop const ap : set set set const Sigma : set (set set) set lemma !x:set.!y:set.(!z:set.nat_p z -> nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) (\w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v) (ordsucc z) = Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ (ordsucc z) & nat_primrec (Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ Empty) (\u:set.\v:set.Eps_i \x2:set.x2 iIn SNoS_ omega & x2 < x & x < x2 + eps_ (ordsucc u) & v < x2) z < w) -> nat_p y -> nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y iIn SNoS_ omega & nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y < x & x < nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y + eps_ y & (!z:set.z iIn y -> SNo (ap (Sigma omega (nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) \w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v)) z) -> ap (Sigma omega (nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) \w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v)) z < nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) (\w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v) y) -> SNo (nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y) -> (?z:set.z iIn SNoS_ omega & z < x & x < z + eps_ (ordsucc y) & nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) (\w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v) y < z) -> nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) iIn SNoS_ omega & nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) < x & x < nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) + eps_ (ordsucc y) & nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y < nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) -> nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) iIn SNoS_ omega & nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) < x & x < nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) + eps_ (ordsucc y) & !z:set.z iIn ordsucc y -> SNo (ap (Sigma omega (nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) \w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v)) z) -> ap (Sigma omega (nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) \w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v)) z < nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) (\w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v) (ordsucc y) const abs_SNo : set set const minus_SNo : set set term - = minus_SNo var x:set var y:set hyp SNo x hyp !z:set.z iIn SNoS_ omega -> (!w:set.w iIn omega -> abs_SNo (z + - x) < eps_ w) -> z = x hyp !z:set.z iIn omega -> ?w:set.w iIn SNoS_ omega & (w < x & x < w + eps_ z) hyp !z:set.nat_p z -> nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) (\w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v) (ordsucc z) = Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ (ordsucc z) & nat_primrec (Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ Empty) (\u:set.\v:set.Eps_i \x2:set.x2 iIn SNoS_ omega & x2 < x & x < x2 + eps_ (ordsucc u) & v < x2) z < w hyp nat_p y hyp nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y iIn SNoS_ omega & nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y < x & x < nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y + eps_ y & !z:set.z iIn y -> SNo (ap (Sigma omega (nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) \w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v)) z) -> ap (Sigma omega (nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) \w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v)) z < nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) (\w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v) y hyp nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y iIn SNoS_ omega hyp nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y < x hyp SNo (nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) y) claim (?z:set.z iIn SNoS_ omega & z < x & x < z + eps_ (ordsucc y) & nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) (\w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v) y < z) -> nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) iIn SNoS_ omega & nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) < x & x < nat_primrec (Eps_i \z:set.z iIn SNoS_ omega & z < x & x < z + eps_ Empty) (\z:set.\w:set.Eps_i \u:set.u iIn SNoS_ omega & u < x & x < u + eps_ (ordsucc z) & w < u) (ordsucc y) + eps_ (ordsucc y) & !z:set.z iIn ordsucc y -> SNo (ap (Sigma omega (nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) \w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v)) z) -> ap (Sigma omega (nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) \w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v)) z < nat_primrec (Eps_i \w:set.w iIn SNoS_ omega & w < x & x < w + eps_ Empty) (\w:set.\u:set.Eps_i \v:set.v iIn SNoS_ omega & v < x & x < v + eps_ (ordsucc w) & u < v) (ordsucc y)