const SNo : set prop const add_SNo : set set set term + = add_SNo infix + 2281 2280 axiom SNo_add_SNo: !x:set.!y:set.SNo x -> SNo y -> SNo (x + y) const SNoLt : set set prop term < = SNoLt infix < 2020 2020 axiom add_SNo_Lt1: !x:set.!y:set.!z:set.SNo x -> SNo y -> SNo z -> x < z -> (x + y) < z + y axiom add_SNo_assoc: !x:set.!y:set.!z:set.SNo x -> SNo y -> SNo z -> x + y + z = (x + y) + z axiom add_SNo_com: !x:set.!y:set.SNo x -> SNo y -> x + y = y + x axiom add_SNo_Lt2: !x:set.!y:set.!z:set.SNo x -> SNo y -> SNo z -> y < z -> (x + y) < x + z axiom add_SNo_rotate_3_1: !x:set.!y:set.!z:set.SNo x -> SNo y -> SNo z -> x + y + z = z + x + y axiom SNoLt_tra: !x:set.!y:set.!z:set.SNo x -> SNo y -> SNo z -> x < y -> y < z -> x < z var x:set var y:set var z:set var w:set var u:set var v:set hyp SNo x hyp SNo y hyp SNo z hyp SNo w hyp SNo u hyp SNo v hyp (y + v) < u hyp (x + z) < v + w hyp SNo (x + z) claim SNo (v + w) -> (x + y + z) < w + u