const In : set set prop term iIn = In infix iIn 2000 2000 const SNo : set prop const SNoLt : set set prop term < = SNoLt infix < 2020 2020 term SNoCutP = \x:set.\y:set.(!z:set.z iIn x -> SNo z) & (!z:set.z iIn y -> SNo z) & !z:set.z iIn x -> !w:set.w iIn y -> z < w term Subq = \x:set.\y:set.!z:set.z iIn x -> z iIn y term TransSet = \x:set.!y:set.y iIn x -> Subq y x const binintersect : set set set axiom binintersectE: !x:set.!y:set.!z:set.z iIn binintersect x y -> z iIn x & z iIn y const SNoLev : set set const SNoL : set set axiom SNoL_I: !x:set.SNo x -> !y:set.SNo y -> SNoLev y iIn SNoLev x -> y < x -> y iIn SNoL x const SNoR : set set axiom SNoR_I: !x:set.SNo x -> !y:set.SNo y -> SNoLev y iIn SNoLev x -> x < y -> y iIn SNoR x const SNoEq_ : set set set prop const nIn : set set prop axiom SNoLtE: !x:set.!y:set.SNo x -> SNo y -> x < y -> !P:prop.(!z:set.SNo z -> SNoLev z iIn binintersect (SNoLev x) (SNoLev y) -> SNoEq_ (SNoLev z) z x -> SNoEq_ (SNoLev z) z y -> x < z -> z < y -> nIn (SNoLev z) x -> SNoLev z iIn y -> P) -> (SNoLev x iIn SNoLev y -> SNoEq_ (SNoLev x) x y -> SNoLev x iIn y -> P) -> (SNoLev y iIn SNoLev x -> SNoEq_ (SNoLev y) x y -> nIn (SNoLev y) x -> P) -> P const add_SNo : set set set term + = add_SNo infix + 2281 2280 const binunion : set set set const Repl : set (set set) set const SNoS_ : set set lemma !x:set.!y:set.!z:set.!w:set.!u:set.(!v:set.!x2:set.SNo (v + x2) & (!y2:set.y2 iIn SNoL v -> (y2 + x2) < v + x2) & (!y2:set.y2 iIn SNoR v -> (v + x2) < y2 + x2) & (!y2:set.y2 iIn SNoL x2 -> (v + y2) < v + x2) & (!y2:set.y2 iIn SNoR x2 -> (v + x2) < v + y2) & SNoCutP (binunion (Repl (SNoL v) \y2:set.y2 + x2) (Repl (SNoL x2) (add_SNo v))) (binunion (Repl (SNoR v) \y2:set.y2 + x2) (Repl (SNoR x2) (add_SNo v))) -> !P:prop.(SNo (v + x2) -> (!y2:set.y2 iIn SNoL v -> (y2 + x2) < v + x2) -> (!y2:set.y2 iIn SNoR v -> (v + x2) < y2 + x2) -> (!y2:set.y2 iIn SNoL x2 -> (v + y2) < v + x2) -> (!y2:set.y2 iIn SNoR x2 -> (v + x2) < v + y2) -> P) -> P) -> SNo x -> (!v:set.v iIn SNoS_ (SNoLev x) -> SNo (v + y) & (!x2:set.x2 iIn SNoL v -> (x2 + y) < v + y) & (!x2:set.x2 iIn SNoR v -> (v + y) < x2 + y) & (!x2:set.x2 iIn SNoL y -> (v + x2) < v + y) & (!x2:set.x2 iIn SNoR y -> (v + y) < v + x2) & SNoCutP (binunion (Repl (SNoL v) \x2:set.x2 + y) (Repl (SNoL y) (add_SNo v))) (binunion (Repl (SNoR v) \x2:set.x2 + y) (Repl (SNoR y) (add_SNo v)))) -> TransSet (SNoLev x) -> SNo z -> SNoLev z iIn SNoLev x -> SNo (z + y) -> (!v:set.v iIn SNoR z -> (z + y) < v + y) -> SNo w -> SNo (w + y) -> (!v:set.v iIn SNoL w -> (v + y) < w + y) -> SNo u -> z < u -> u < w -> SNoLev u iIn SNoLev z -> SNoLev u iIn SNoLev w -> SNoLev u iIn SNoLev x -> (z + y) < w + y var x:set var y:set var z:set var w:set hyp !u:set.!v:set.SNo (u + v) & (!x2:set.x2 iIn SNoL u -> (x2 + v) < u + v) & (!x2:set.x2 iIn SNoR u -> (u + v) < x2 + v) & (!x2:set.x2 iIn SNoL v -> (u + x2) < u + v) & (!x2:set.x2 iIn SNoR v -> (u + v) < u + x2) & SNoCutP (binunion (Repl (SNoL u) \x2:set.x2 + v) (Repl (SNoL v) (add_SNo u))) (binunion (Repl (SNoR u) \x2:set.x2 + v) (Repl (SNoR v) (add_SNo u))) -> !P:prop.(SNo (u + v) -> (!x2:set.x2 iIn SNoL u -> (x2 + v) < u + v) -> (!x2:set.x2 iIn SNoR u -> (u + v) < x2 + v) -> (!x2:set.x2 iIn SNoL v -> (u + x2) < u + v) -> (!x2:set.x2 iIn SNoR v -> (u + v) < u + x2) -> P) -> P hyp SNo x hyp !u:set.u iIn SNoS_ (SNoLev x) -> SNo (u + y) & (!v:set.v iIn SNoL u -> (v + y) < u + y) & (!v:set.v iIn SNoR u -> (u + y) < v + y) & (!v:set.v iIn SNoL y -> (u + v) < u + y) & (!v:set.v iIn SNoR y -> (u + y) < u + v) & SNoCutP (binunion (Repl (SNoL u) \v:set.v + y) (Repl (SNoL y) (add_SNo u))) (binunion (Repl (SNoR u) \v:set.v + y) (Repl (SNoR y) (add_SNo u))) hyp TransSet (SNoLev x) hyp SNo z hyp SNoLev z iIn SNoLev x hyp z < x hyp SNo (z + y) hyp !u:set.u iIn SNoR z -> (z + y) < u + y hyp SNo w hyp x < w hyp SNo (w + y) hyp !u:set.u iIn SNoL w -> (u + y) < w + y claim z < w -> (z + y) < w + y