const In : set set prop term iIn = In infix iIn 2000 2000 const SNo : set prop const SNoLt : set set prop term < = SNoLt infix < 2020 2020 term SNoCutP = \x:set.\y:set.(!z:set.z iIn x -> SNo z) & (!z:set.z iIn y -> SNo z) & !z:set.z iIn x -> !w:set.w iIn y -> z < w term Subq = \x:set.\y:set.!z:set.z iIn x -> z iIn y term TransSet = \x:set.!y:set.y iIn x -> Subq y x const Sep : set (set prop) set const SNoS_ : set set const SNoLev : set set term SNoL = \x:set.Sep (SNoS_ (SNoLev x)) \y:set.y < x term SNoR = \x:set.Sep (SNoS_ (SNoLev x)) (SNoLt x) term ordinal = \x:set.TransSet x & !y:set.y iIn x -> TransSet y const minus_SNo : set set term - = minus_SNo const Repl : set (set set) set lemma !x:set.!y:set.!z:set.!w:set.(!u:set.u iIn SNoS_ (SNoLev x) -> SNo - u & (!v:set.v iIn SNoL u -> - u < - v) & (!v:set.v iIn SNoR u -> - v < - u) & SNoCutP (Repl (SNoR u) minus_SNo) (Repl (SNoL u) minus_SNo)) -> SNo y -> SNo z -> SNo - z -> (!u:set.u iIn SNoR z -> - u < - z) -> SNo - y -> (!u:set.u iIn SNoL y -> - y < - u) -> SNo w -> z < w -> w < y -> SNoLev w iIn SNoLev z -> SNoLev w iIn SNoLev y -> w iIn SNoS_ (SNoLev x) -> SNo - w -> - y < - z var x:set var y:set var z:set var w:set hyp SNo x hyp !u:set.u iIn SNoS_ (SNoLev x) -> SNo - u & (!v:set.v iIn SNoL u -> - u < - v) & (!v:set.v iIn SNoR u -> - v < - u) & SNoCutP (Repl (SNoR u) minus_SNo) (Repl (SNoL u) minus_SNo) hyp SNo y hyp SNoLev y iIn SNoLev x hyp SNo z hyp SNo - z hyp !u:set.u iIn SNoR z -> - u < - z hyp SNo - y hyp !u:set.u iIn SNoL y -> - y < - u hyp SNo w hyp z < w hyp w < y hyp SNoLev w iIn SNoLev z hyp SNoLev w iIn SNoLev y claim w iIn SNoS_ (SNoLev x) -> - y < - z