const CSNo : set prop const CSNo_Re : set set const mul_CSNo : set set set const add_SNo : set set set term + = add_SNo infix + 2281 2280 const mul_SNo : set set set term * = mul_SNo infix * 2291 2290 const minus_SNo : set set term - = minus_SNo const CSNo_Im : set set axiom mul_CSNo_CRe: !x:set.!y:set.CSNo x -> CSNo y -> CSNo_Re (mul_CSNo x y) = CSNo_Re x * CSNo_Re y + - CSNo_Im x * CSNo_Im y const add_CSNo : set set set axiom add_CSNo_CRe: !x:set.!y:set.CSNo x -> CSNo y -> CSNo_Re (add_CSNo x y) = CSNo_Re x + CSNo_Re y const SNo : set prop axiom mul_SNo_distrL: !x:set.!y:set.!z:set.SNo x -> SNo y -> SNo z -> x * (y + z) = x * y + x * z axiom add_CSNo_CIm: !x:set.!y:set.CSNo x -> CSNo y -> CSNo_Im (add_CSNo x y) = CSNo_Im x + CSNo_Im y axiom SNo_add_SNo: !x:set.!y:set.SNo x -> SNo y -> SNo (x + y) axiom mul_SNo_minus_distrL: !x:set.!y:set.SNo x -> SNo y -> (- x) * y = - x * y axiom SNo_minus_SNo: !x:set.SNo x -> SNo - x axiom SNo_mul_SNo: !x:set.!y:set.SNo x -> SNo y -> SNo (x * y) axiom add_SNo_com_4_inner_mid: !x:set.!y:set.!z:set.!w:set.SNo x -> SNo y -> SNo z -> SNo w -> (x + y) + z + w = (x + z) + y + w axiom mul_CSNo_CIm: !x:set.!y:set.CSNo x -> CSNo y -> CSNo_Im (mul_CSNo x y) = CSNo_Re x * CSNo_Im y + CSNo_Im x * CSNo_Re y axiom CSNo_ReIm_split: !x:set.!y:set.CSNo x -> CSNo y -> CSNo_Re x = CSNo_Re y -> CSNo_Im x = CSNo_Im y -> x = y var x:set var y:set var z:set hyp CSNo x hyp CSNo y hyp CSNo z hyp CSNo (add_CSNo y z) hyp CSNo (mul_CSNo x y) hyp CSNo (mul_CSNo x z) hyp CSNo (mul_CSNo x (add_CSNo y z)) hyp CSNo (add_CSNo (mul_CSNo x y) (mul_CSNo x z)) hyp SNo (CSNo_Re x) hyp SNo (CSNo_Re y) hyp SNo (CSNo_Re z) hyp SNo (CSNo_Im x) hyp SNo (CSNo_Im y) claim SNo (CSNo_Im z) -> mul_CSNo x (add_CSNo y z) = add_CSNo (mul_CSNo x y) (mul_CSNo x z)