const In : set set prop term iIn = In infix iIn 2000 2000 const SNo : set prop const SNoLt : set set prop term < = SNoLt infix < 2020 2020 term SNoCutP = \x:set.\y:set.(!z:set.z iIn x -> SNo z) & (!z:set.z iIn y -> SNo z) & !z:set.z iIn x -> !w:set.w iIn y -> z < w term Subq = \x:set.\y:set.!z:set.z iIn x -> z iIn y term TransSet = \x:set.!y:set.y iIn x -> Subq y x const SNoL : set set const SNoS_ : set set const SNoLev : set set axiom SNoL_SNoS: !x:set.SNo x -> !y:set.y iIn SNoL x -> y iIn SNoS_ (SNoLev x) const SNoR : set set axiom SNoR_SNoS: !x:set.SNo x -> !y:set.y iIn SNoR x -> y iIn SNoS_ (SNoLev x) axiom SNoLt_tra: !x:set.!y:set.!z:set.SNo x -> SNo y -> SNo z -> x < y -> y < z -> x < z axiom SNoR_E: !x:set.SNo x -> !y:set.y iIn SNoR x -> !P:prop.(SNo y -> SNoLev y iIn SNoLev x -> x < y -> P) -> P axiom SNoL_E: !x:set.SNo x -> !y:set.y iIn SNoL x -> !P:prop.(SNo y -> SNoLev y iIn SNoLev x -> y < x -> P) -> P const mul_SNo : set set set term * = mul_SNo infix * 2291 2290 const add_SNo : set set set term + = add_SNo infix + 2281 2280 lemma !x:set.!y:set.!z:set.!w:set.!u:set.!v:set.SNo x -> (!x2:set.x2 iIn SNoS_ (SNoLev x) -> !y2:set.SNo y2 -> !P:prop.(SNo (x2 * y2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoL y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoR y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoR y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoL y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> P) -> P) -> SNo y -> (!x2:set.x2 iIn SNoS_ (SNoLev y) -> !P:prop.(SNo (x * x2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoL x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoR x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoR x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoL x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> P) -> P) -> (!x2:set.x2 iIn SNoL x -> !y2:set.SNo y2 -> SNo (x2 * y2)) -> (!x2:set.x2 iIn SNoL x -> SNo (x2 * y)) -> z iIn SNoL x -> w iIn SNoL y -> SNo z -> SNoLev z iIn SNoLev x -> z < x -> SNo w -> SNoLev w iIn SNoLev y -> w < y -> u iIn SNoL x -> v iIn SNoR y -> SNo u -> SNoLev u iIn SNoLev x -> u < x -> SNo v -> y < v -> SNo (z * y) -> SNo (x * w) -> SNo (z * w) -> SNo (u * y) -> SNo (x * v) -> SNo (u * v) -> SNo (z * v) -> SNo (u * w) -> w < v -> (z * y + x * w + u * v) < u * y + x * v + z * w lemma !x:set.!y:set.!z:set.!w:set.!u:set.!v:set.SNo x -> (!x2:set.x2 iIn SNoS_ (SNoLev x) -> !y2:set.SNo y2 -> !P:prop.(SNo (x2 * y2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoL y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoR y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoR y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoL y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> P) -> P) -> SNo y -> (!x2:set.x2 iIn SNoS_ (SNoLev y) -> !P:prop.(SNo (x * x2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoL x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoR x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoR x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoL x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> P) -> P) -> (!x2:set.x2 iIn SNoL x -> !y2:set.SNo y2 -> SNo (x2 * y2)) -> (!x2:set.x2 iIn SNoR x -> !y2:set.SNo y2 -> SNo (x2 * y2)) -> (!x2:set.x2 iIn SNoL y -> SNo (x * x2)) -> z iIn SNoL x -> w iIn SNoL y -> SNo z -> SNoLev z iIn SNoLev x -> z < x -> SNo w -> SNoLev w iIn SNoLev y -> w < y -> u iIn SNoR x -> v iIn SNoL y -> SNo u -> x < u -> SNo v -> SNoLev v iIn SNoLev y -> v < y -> SNo (z * y) -> SNo (x * w) -> SNo (z * w) -> SNo (u * y) -> SNo (x * v) -> SNo (u * v) -> SNo (z * v) -> SNo (u * w) -> z < u -> (z * y + x * w + u * v) < u * y + x * v + z * w lemma !x:set.!y:set.!z:set.!w:set.!u:set.!v:set.SNo x -> (!x2:set.x2 iIn SNoS_ (SNoLev x) -> !y2:set.SNo y2 -> !P:prop.(SNo (x2 * y2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoL y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoR y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoR y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoL y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> P) -> P) -> SNo y -> (!x2:set.x2 iIn SNoS_ (SNoLev y) -> !P:prop.(SNo (x * x2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoL x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoR x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoR x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoL x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> P) -> P) -> (!x2:set.x2 iIn SNoL x -> !y2:set.SNo y2 -> SNo (x2 * y2)) -> (!x2:set.x2 iIn SNoR x -> !y2:set.SNo y2 -> SNo (x2 * y2)) -> (!x2:set.x2 iIn SNoR y -> SNo (x * x2)) -> z iIn SNoR x -> w iIn SNoR y -> SNo z -> SNoLev z iIn SNoLev x -> x < z -> SNo w -> SNoLev w iIn SNoLev y -> y < w -> u iIn SNoL x -> v iIn SNoR y -> SNo u -> u < x -> SNo v -> SNoLev v iIn SNoLev y -> y < v -> SNo (z * y) -> SNo (x * w) -> SNo (z * w) -> SNo (u * y) -> SNo (x * v) -> SNo (u * v) -> SNo (z * v) -> SNo (u * w) -> u < z -> (z * y + x * w + u * v) < u * y + x * v + z * w lemma !x:set.!y:set.!z:set.!w:set.!u:set.!v:set.SNo x -> (!x2:set.x2 iIn SNoS_ (SNoLev x) -> !y2:set.SNo y2 -> !P:prop.(SNo (x2 * y2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoL y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoR y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoR y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoL y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> P) -> P) -> SNo y -> (!x2:set.x2 iIn SNoS_ (SNoLev y) -> !P:prop.(SNo (x * x2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoL x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoR x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoR x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoL x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> P) -> P) -> (!x2:set.x2 iIn SNoR x -> !y2:set.SNo y2 -> SNo (x2 * y2)) -> (!x2:set.x2 iIn SNoR x -> SNo (x2 * y)) -> z iIn SNoR x -> w iIn SNoR y -> SNo z -> SNoLev z iIn SNoLev x -> x < z -> SNo w -> SNoLev w iIn SNoLev y -> y < w -> u iIn SNoR x -> v iIn SNoL y -> SNo u -> SNoLev u iIn SNoLev x -> x < u -> SNo v -> v < y -> SNo (z * y) -> SNo (x * w) -> SNo (z * w) -> SNo (u * y) -> SNo (x * v) -> SNo (u * v) -> SNo (z * v) -> SNo (u * w) -> v < w -> (z * y + x * w + u * v) < u * y + x * v + z * w const minus_SNo : set set term - = minus_SNo var x:set var y:set var z:set var w:set var u:set var v:set hyp SNo x hyp !x2:set.x2 iIn SNoS_ (SNoLev x) -> !y2:set.SNo y2 -> !P:prop.(SNo (x2 * y2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoL y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoR y2 -> (z2 * y2 + x2 * w2) < x2 * y2 + z2 * w2) -> (!z2:set.z2 iIn SNoL x2 -> !w2:set.w2 iIn SNoR y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> (!z2:set.z2 iIn SNoR x2 -> !w2:set.w2 iIn SNoL y2 -> (x2 * y2 + z2 * w2) < z2 * y2 + x2 * w2) -> P) -> P hyp SNo y hyp !x2:set.x2 iIn SNoS_ (SNoLev y) -> !P:prop.(SNo (x * x2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoL x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoR x2 -> (y2 * x2 + x * z2) < x * x2 + y2 * z2) -> (!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoR x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoL x2 -> (x * x2 + y2 * z2) < y2 * x2 + x * z2) -> P) -> P hyp !x2:set.x2 iIn z -> !P:prop.(!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoL y -> x2 = y2 * y + x * z2 + - y2 * z2 -> P) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoR y -> x2 = y2 * y + x * z2 + - y2 * z2 -> P) -> P hyp !x2:set.x2 iIn w -> !P:prop.(!y2:set.y2 iIn SNoL x -> !z2:set.z2 iIn SNoR y -> x2 = y2 * y + x * z2 + - y2 * z2 -> P) -> (!y2:set.y2 iIn SNoR x -> !z2:set.z2 iIn SNoL y -> x2 = y2 * y + x * z2 + - y2 * z2 -> P) -> P hyp !x2:set.x2 iIn SNoL x -> !y2:set.SNo y2 -> SNo (x2 * y2) hyp !x2:set.x2 iIn SNoR x -> !y2:set.SNo y2 -> SNo (x2 * y2) hyp !x2:set.x2 iIn SNoL x -> SNo (x2 * y) hyp !x2:set.x2 iIn SNoR x -> SNo (x2 * y) hyp !x2:set.x2 iIn SNoL y -> SNo (x * x2) hyp !x2:set.x2 iIn SNoR y -> SNo (x * x2) hyp u iIn z hyp v iIn w claim (!x2:set.x2 iIn SNoS_ (SNoLev x) -> !y2:set.y2 iIn SNoS_ (SNoLev x) -> !z2:set.z2 iIn SNoS_ (SNoLev y) -> !w2:set.w2 iIn SNoS_ (SNoLev y) -> !P:prop.(SNo (x2 * y) -> SNo (x * z2) -> SNo (x2 * z2) -> SNo (y2 * y) -> SNo (x * w2) -> SNo (y2 * w2) -> SNo (x2 * w2) -> SNo (y2 * z2) -> (u = x2 * y + x * z2 + - x2 * z2 -> v = y2 * y + x * w2 + - y2 * w2 -> (x2 * y + x * z2 + y2 * w2) < y2 * y + x * w2 + x2 * z2 -> u < v) -> P) -> P) -> u < v