const Sep : set (set prop) set const SNoS_ : set set const ordsucc : set set const omega : set const minus_SNo : set set term - = minus_SNo const In : set set prop term iIn = In infix iIn 2000 2000 const SNoLt : set set prop term < = SNoLt infix < 2020 2020 const abs_SNo : set set const add_SNo : set set set term + = add_SNo infix + 2281 2280 const eps_ : set set term real = Sep (SNoS_ (ordsucc omega)) \x:set.x != omega & x != - omega & !y:set.y iIn SNoS_ omega -> (!z:set.z iIn omega -> abs_SNo (y + - x) < eps_ z) -> y = x axiom SepI: !x:set.!p:set prop.!y:set.y iIn x -> p y -> y iIn Sep x p claim !x:set.x iIn SNoS_ (ordsucc omega) -> x != omega -> x != - omega -> (!y:set.y iIn SNoS_ omega -> (!z:set.z iIn omega -> abs_SNo (y + - x) < eps_ z) -> y = x) -> x iIn real