Embedding SUMO into Set Theory

Chad E. Brown ${ }^{1}$ Adam Pease ${ }^{2}$ Josef Urban ${ }^{1}$

Czech Technical University in Prague, Czech Republic
Parallax Research, Beavercreek, OH, USA

September 13, 2023

Supported by the Czech project AI\&Reasoning CZ.02.1.01/0.0/0.0/15 003/ 0000466 and the European Regional Development Fund and the Ministry of Education, Youth and Sports within the dedicated program ERC CZ under the project POSTMAN no. LL1902.

Suggested Upper Merged Ontology (SUMO)

- 20+yrs of effort, 20k terms, 80k statements, some in HOL, many tools
- Is SUMO consistent? Most of the time, as far as we know, at least in FOL
- Regular testing with E prover's contradiction finder that generates 1000's of tests
$-\sim 75$ test problems in TPTP (x3 variations for different portions of SUMO)
- Testing with Vampire - GitHub runs Vampire for hours triggered by SUMO upload
- Simple algorithmic checks for type consistency etc.
- Is any large software system 100% bug-free? Can still be useful. And contradictions are clear since they don't use the conjecture.
- Only a few experiments in HOL
https://www.ontologyportal.org
https://github.com/ontologyportal

SUMO to THF

- Work with Chris Benzmüller from 2010
- Mainly a "syntactic" translation
- Didn't use type guards
- Did expand row variables, variable arity relations
- No possible worlds/Kripke semantics

HOL Relations

- KappaFn
- ProbabilityFn
- attitudeForFormula
- believes
- causesProposition
- conditionalProbability
- confersNorm
- confersObligation
- confersRight
- considers
- containsFormula
- decreasesLikelihood
- deprivesNorm
- describes
- desires
- disapproves
- doubts
- entails
- expects
- hasPurpose
- hasPurposeForAgent
- holdsDuring
- holdsObligation
- holdsRight
- increasesLikelihood
- independentProbability
- knows
- modalAttribute
- permits
- prefers
- prohibits
- rateDetail
- treatedPageDefinition
- visitorParameter

SUMO statistics

Knowledge base statistics

Total Terms	Total Axioms	Total Rules
16050	228841	6957

Relations: 1705
Ground tuples: 221799

of which are binary:	152069
of which arity more than binary:	69815

Rules: 6957

of which are horn:	2337
first-order:	5146
temporal:	772
modal:	256
epistemic:	86
other higher-order:	804

What did we do and why?

- A set theoretic interpretation get us closer to ensuring consistency.
- We can also take queries and turn them into theorem proving problems.
- We did this with 23 examples, many selected from an earlier published set of 35 .
- The translated SUMO axioms and queries become large, complex, and difficult to reason with.
- So we did interactive proofs and ask ATPs to prove subgoals in the proofs.
- What are the ATP results?

Problem	Subgoals	Zipperposition	Vampire	E	Lash	Leo-III
TQG1	50	$50(100 \%)$	$50(100 \%)$	$50(100 \%)$	$50(100 \%)$	$50(100 \%)$
TQG3	20	$20(100 \%)$	$20(100 \%)$	$14(70 \%)$	$20(100 \%)$	$8(40 \%)$
TQG7	195	$188(96 \%)$	$185(95 \%)$	$180(92 \%)$	$160(82 \%)$	$158(81 \%)$
TQG9	19	$19(100 \%)$	$19(100 \%)$	$19(100 \%)$	$19(100 \%)$	$19(100 \%)$
TQG10	112	$112(100 \%)$	$112(100 \%)$	$100(89 \%)$	$58(52 \%)$	$96(86 \%)$
TQG11	100	$76(76 \%)$	$39(39 \%)$	$67(67 \%)$	$45(45 \%)$	$13(13 \%)$
TQG19	37	$34(92 \%)$	$22(59 \%)$	$20(54 \%)$	$37(100 \%)$	$11(30 \%)$
TQG20	41	$34(83 \%)$	$22(54 \%)$	$20(49 \%)$	$41(100 \%)$	$13(32 \%)$
TQG21	207	$154(74 \%)$	$150(72 \%)$	$143(69 \%)$	$101(49 \%)$	$56(27 \%)$
TQG22alt3	319	$246(77 \%)$	$214(67 \%)$	$193(61 \%)$	$197(62 \%)$	$136(43 \%)$
TQG22alt4	322	$251(78 \%)$	$218(68 \%)$	$197(61 \%)$	$201(62 \%)$	$142(44 \%)$
TQG22	315	$271(86 \%)$	$224(71 \%)$	$212(67 \%)$	$201(64 \%)$	$142(45 \%)$
TQG23	67	$61(91 \%)$	$67(100 \%)$	$42(63 \%)$	$51(76 \%)$	$38(57 \%)$
TQG25alt1	910	$652(72 \%)$	$526(58 \%)$	$580(64 \%)$	$529(58 \%)$	$246(27 \%)$
TQG27	7	$7(100 \%)$	$7(100 \%)$	$7(100 \%)$	$7(100 \%)$	$7(100 \%)$
TQG28alt1	600	$428(71 \%)$	$386(64 \%)$	$349(58 \%)$	$261(44 \%)$	$213(36 \%)$
TQG30	4	$4(100 \%)$	$4(100 \%)$	$3(75 \%)$	$4(100 \%)$	$4(100 \%)$
TQG33	112	$82(73 \%)$	$83(74 \%)$	$79(71 \%)$	$85(76 \%)$	$36(32 \%)$
TQG45	162	$136(84 \%)$	$131(81 \%)$	$128(79 \%)$	$106(65 \%)$	$36(22 \%)$
TQG46	344	$258(75 \%)$	$215(62 \%)$	$225(65 \%)$	$163(47 \%)$	$144(42 \%)$
TQG47	186	$141(76 \%)$	$113(61 \%)$	$109(59 \%)$	$93(50 \%)$	$79(42 \%)$
TQG48	336	$249(74 \%)$	$234(70 \%)$	$219(65 \%)$	$184(55 \%)$	$146(43 \%)$
wordex	415	$315(76 \%)$	$255(61 \%)$	$236(57 \%)$	$284(68 \%)$	$143(34 \%)$
Total	4880	$3788(78 \%)$	$3296(68 \%)$	$3192(65 \%)$	$2897(59 \%)$	$1936(40 \%)$

Table: Number of Subgoals Proven Automatically in 60 seconds

Some Challenging SUMO Constructs

- Variable arity relations
- Kappa classes
- Row variables and quantified predicates
- Implicit type guards.

Some Challenging SUMO Constructs

- Variable arity relations
- Example: partition
- (partition Animal Vertebrate Invertebrate)
- (partition Organism Animal Plant Fungus Microorganism)
- Kappa classes
- Row variables and quantified predicates
- Implicit type guards.

Some Challenging SUMO Constructs

- Variable arity relations
- Example: partition
- (partition Animal Vertebrate Invertebrate)
- (partition Organism Animal Plant Fungus Microorganism)
- Kappa classes
- (KappaFn ?X (part ?X ?V))
- Row variables and quantified predicates
- Implicit type guards.

Some Challenging SUMO Constructs

- Variable arity relations
- Example: partition
- (partition Animal Vertebrate Invertebrate)
- (partition Organism Animal Plant Fungus Microorganism)
- Kappa classes
- (KappaFn ?X (part ?X ?V))
- Row variables and quantified predicates
- (=> (and (subrelation ?REL1 ?REL2) (?REL1 @ROW)) (?REL2 @ROW))
- Implicit type guards.

Some Challenging SUMO Constructs

- Variable arity relations
- Example: partition
- (partition Animal Vertebrate Invertebrate)
- (partition Organism Animal Plant Fungus Microorganism)
- Kappa classes
- (KappaFn ?X (part ?X ?V))
- Row variables and quantified predicates
- (=> (and (subrelation ?REL1 ?REL2) (?REL1 @ROW)) (?REL2 @ROW))
- Implicit type guards.
- In previous: ?REL1 and ?REL2 must Relations.
- and @ROW must be a list appropriate for the two particular relations.

Simple Example

- 3 SUMO assertions:
- The "uses" relation is asymmetric:
- (instance uses AsymmetricRelation)

Simple Example

- 3 SUMO assertions:
- The "uses" relation is asymmetric:
- (instance uses AsymmetricRelation)
- Every asymmetric relation is irreflexive:
- (subclass AsymmetricRelation IrreflexiveRelation)

Simple Example

- 3 SUMO assertions:
- The "uses" relation is asymmetric:
- (instance uses AsymmetricRelation)
- Every asymmetric relation is irreflexive:
- (subclass AsymmetricRelation IrreflexiveRelation)
- What irreflexive means:
- (=> (instance ?REL IrreflexiveRelation) (forall (?INST) (not (?REL ?INST ?INST))))

Simple Example

- 3 SUMO assertions:
- The "uses" relation is asymmetric:
- (instance uses AsymmetricRelation)
- Every asymmetric relation is irreflexive:
- (subclass AsymmetricRelation IrreflexiveRelation)
- What irreflexive means:
- (=> (instance ?REL IrreflexiveRelation) (forall (?INST) (not (?REL ?INST ?INST))))
- Idea: instantiate ?REL with uses.
- But it's used as both a constant and binary relation?

Simple Example (Partly Translated)

- The 3 SUMO assertions set theoretically:
- (instance uses AsymmetricRelation)
- uses is interpreted as a set we call USES.
- AsymmetricRelation is also interpreted as a set we call ASYMMETRICRELATION.
- Assertion: USES \in ASYMMETRICRELATION.

Simple Example (Partly Translated)

- The 3 SUMO assertions set theoretically:
- (instance uses AsymmetricRelation)
- uses is interpreted as a set we call USES.
- AsymmetricRelation is also interpreted as a set we call ASYMMETRICRELATION.
- Assertion: USES \in ASYMMETRICRELATION.
- (subclass AsymmetricRelation IrreflexiveRelation)
- ASYMMETRICRELATION \subseteq IRREFLEXIVERELATION

Simple Example (Almost Translated)

- (=> (instance ?REL IrreflexiveRelation) (forall (?INST) (not (?REL ?INST ?INST))))
- Almost this: $\forall r \in$ IRREFLEXIVERELATION. $\forall x . \neg r(x, x)$.

Simple Example (Almost Translated)

- (=> (instance ?REL IrreflexiveRelation) (forall (?INST) (not (?REL ?INST ?INST))))
- Almost this: $\forall r \in$ IRREFLEXIVERELATION. $\forall x . \neg r(x, x)$.
- Note: USES is a set and r quantifies over sets.

Simple Example (Almost Translated)

- (=> (instance ?REL IrreflexiveRelation) (forall (?INST) (not (?REL ?INST ?INST))))
- Almost this: $\forall r \in$ IRREFLEXIVERELATION. $\forall x . \neg r(x, x)$.
- Note: USES is a set and r quantifies over sets.
- Why almost? For a few reasons.

Simple Example (Almost Translated)

- (=> (instance ?REL IrreflexiveRelation) (forall (?INST) (not (?REL ?INST ?INST))))
- Almost this: $\forall r \in$ IRREFLEXIVERELATION. $\forall x . \neg r(x, x)$.
- Note: USES is a set and r quantifies over sets.
- Why almost? For a few reasons.
- One important reason: type guards.

Simple Example (Almost Translated)

- (=> (instance ?REL IrreflexiveRelation) (forall (?INST) (not (?REL ?INST ?INST))))
- Almost this: $\forall r \in$ IRREFLEXIVERELATION. $\forall x . \neg r(x, x)$.
- Note: USES is a set and r quantifies over sets.
- Why almost? For a few reasons.
- One important reason: type guards.
- The SUMO relation uses expects
- an instance of Object as first argument and
- an instance of Agent as second argument.

Simple Example (Almost Translated)

- (=> (instance ?REL IrreflexiveRelation) (forall (?INST) (not (?REL ?INST ?INST))))
- Almost this: $\forall r \in$ IRREFLEXIVERELATION. $\forall x . \neg r(x, x)$.
- Note: USES is a set and r quantifies over sets.
- Why almost? For a few reasons.
- One important reason: type guards.
- The SUMO relation uses expects
- an instance of Object as first argument and
- an instance of Agent as second argument.
- So irreflexivity of USES should be guarded and say

$$
\forall x \in \text { OBJECT } \cap \text { AGENT. } \neg \operatorname{USES}(x, x)
$$

Simple Example (Almost Translated)

- (=> (instance ?REL IrreflexiveRelation) (forall (?INST) (not (?REL ?INST ?INST))))
- Almost this: $\forall r \in$ IRREFLEXIVERELATION. $\forall x . \neg r(x, x)$.
- Note: USES is a set and r quantifies over sets.
- Why almost? For a few reasons.
- One important reason: type guards.
- The SUMO relation uses expects
- an instance of Object as first argument and
- an instance of Agent as second argument.
- So irreflexivity of USES should be guarded and say

$$
\forall x \in \text { OBJECT } \cap \text { AGENT. } \neg \operatorname{USES}(x, x)
$$

- But how can we know the guards before we instantiate the r ?

Simple Example (Type Guards)

- Instead of $\forall r \in$ IRREFLEXIVERELATION. $\forall x . \neg r(x, x)$
- we almost do this:

$$
\begin{aligned}
& \forall r \in \text { IRREFLEXIVERELATION. } \\
& \forall x \in \operatorname{dom}_{1}(r) \cap \operatorname{dom}_{2}(r) \cdot \operatorname{ap}(r)(x, x)
\end{aligned}
$$

- Here part of the translation asserts the "typing" information:
- $\operatorname{dom}_{1}($ USES $)=$ OBJECT
- $\operatorname{dom}_{2}($ USES $)=$ AGENT
- ap(USES) is the function taking a pair to a boolean.
- Now we should think of the set USES as a tuple (q, n, u, \ldots) where q is the actual relation, n is arity information and u gives the typing information.

Another Simple Example (Variable Arity)

- uses has a fixed arity of 2 .
- partition has variable arity of at least 2 .
- Let P be the set interpreting partition.
- Apply $\mathrm{ap}(\mathrm{P})$ to 1 argument: a list.
(partition Organism Animal Plant Fungus Microorganism)
becomes

```
ap(P) (cons ORGANISM
    (cons ANIMAL
    (cons PLANT
    (cons FUNGUS
        (cons MICROORGANISM nil))))).
```


Type Guards for Row Variables

```
(=> (partition @ROW)
    (and (exhaustiveDecomposition @ROW)
    (disjointDecomposition @ROW)))
```

becomes

$$
\forall \rho . \Gamma(\rho) \rightarrow \operatorname{ap}(\mathrm{P})(\rho) \rightarrow \operatorname{ap}(\mathrm{ED})(\rho) \wedge \operatorname{ap}(\mathrm{DD})(\rho)
$$

where $\Gamma(\rho)$ is the guard for ρ :

- Length of ρ is at least 2 (min arity of P, ED and DD).
- Each item in ρ is a member of CLASS.

Query

- Query: Must every organism that is not an animal and not a microogranism be a plant or a fungus? In SUO-KIF:
(query
(forall (?O)
(=>
(instance ?O Organism)
(=>
(not
(instance ?O Animal))
(=>
(not
(instance ?O Microorganism)) (or
(instance ?O Plant) (instance ?O Fungus))))))
- For every exhaustive decomposition of a class into a list of subclasses and member O of the class, there is an element I in the list of subclasses such that O is in I. In SUMO:
(=>
(exhaustiveDecomposition ?CLASS @ROW)
(forall (?OBJ)
(=>
(instance ?OBJ ?CLASS)
(exists (?ITEM)
(and

$$
\begin{aligned}
& \text { (inList ?ITEM (ListFn @ROW)) } \\
& \text { (instance ?OBJ ?ITEM)))))) }
\end{aligned}
$$

Proof sketch:

- Let O be an organism that is not an animal and not a microorganism.
- There is an exhaustive decomposition of Organism into Animal, Plant, Fungus and Microorganism.
- There is an I in the list of the four subclasses (Animal, Plant, Fungus and Microorganism) such that $O \in I$.
- $I \neq$ Animal since O is not an animal.
- If $I=$ Plant, then we're done.
- If $I=$ Fungus, then we're done.
- $I \neq$ Microorganism since O is not a microorganism. QED

Proof sketch:

- Let O be an organism that is not an animal and not a microorganism.
- There is an exhaustive decomposition of Organism into Animal, Plant, Fungus and Microorganism.
- There is an I in the list of the four subclasses (Animal, Plant, Fungus and Microorganism) such that $O \in I$.
- $I \neq$ Animal since O is not an animal.
- If $I=$ Plant, then we're done.
- If $I=$ Fungus, then we're done.
- $I \neq$ Microorganism since O is not a microorganism. QED
- This simple sketch of a proof corresponds to 910 subgoals.
- ATPs prove 27% to 72% of the 910 subgoals.

Kappa Example

Given an atom V, SUMO can represent the class of electrons of V.

(instance ?V Atom)

(KappaFn ?X
(and
(part ?X ?V)
(instance ?X Electron)))

$$
\begin{align*}
\{X \in \mathrm{U} \mid & X \in \text { OBJECT } \wedge \\
& X \in \text { ENTITY } \wedge \\
& \text { bp }(\text { ap PART }(\text { cons } X(\text { cons } V \text { nil }))) \wedge \tag{1}\\
& X \in \text { ELECTRON }\}
\end{align*}
$$

Example 1:

- Query: For every atom V and every electron E that is part of V, E is a member of the class of all electrons of V.

Example 2:

- Query: For every atom V and every electron E in the class of all electrons of V, E is part of V.
Example 3:
- Query: For every atom V, there is a class C such that for every electron E, E is part of V if and only if E is in C.

Conclusion

- We can translate SUMO axiom and queries into higher-order set theory.
- Using higher-order, we can represent SUMO's κ-class formers naturally as set separation: $\{x \in \mathrm{U} \mid \psi\}$.
- In 23 test cases the translated queries are provable (interactively).
- In 10 cases the translated queries are provable by at least one higher-order ATP.
- In the other 13 test cases, ATPs can prove a percentage of the subgoals.
- Future work: modalities

