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Suggested Upper Merged Ontology (SUMO)

I 20+yrs of effort, 20k terms, 80k statements, some in HOL,
many tools

I Is SUMO consistent? Most of the time, as far as we know, at
least in FOL
I Regular testing with E prover’s contradiction finder that

generates 1000’s of tests
I ∼75 test problems in TPTP (x3 variations for different

portions of SUMO)
I Testing with Vampire - GitHub runs Vampire for hours

triggered by SUMO upload
I Simple algorithmic checks for type consistency etc.
I Is any large software system 100% bug-free? Can still be

useful. And contradictions are clear since they don’t use the
conjecture.

I Only a few experiments in HOL

https://www.ontologyportal.org
https://github.com/ontologyportal

https://www.ontologyportal.org
https://github.com/ontologyportal


SUMO to THF

I Work with Chris Benzmüller from 2010
I Mainly a “syntactic” translation
I Didn’t use type guards
I Did expand row variables, variable arity relations
I No possible worlds/Kripke semantics



HOL Relations

I KappaFn
I ProbabilityFn
I attitudeForFormula
I believes
I causesProposition
I conditionalProbability
I confersNorm
I confersObligation
I confersRight
I considers
I containsFormula
I decreasesLikelihood

I deprivesNorm
I describes
I desires
I disapproves
I doubts
I entails
I expects
I hasPurpose
I hasPurposeForAgent
I holdsDuring
I holdsObligation
I holdsRight

I increasesLikelihood

I independentProbability

I knows

I modalAttribute

I permits

I prefers

I prohibits

I rateDetail

I treatedPageDefinition

I visitorParameter



SUMO statistics

Knowledge base statistics
Total Terms Total Axioms Total Rules

16050 228841 6957

Relations: 1705

Ground tuples: 221799
of which are binary: 152069

of which arity more than binary: 69815

Rules: 6957
of which are horn: 2337

first-order: 5146
temporal: 772

modal: 256
epistemic: 86

other higher-order: 804



What did we do and why?

I A set theoretic interpretation get us closer to ensuring
consistency.

I We can also take queries and turn them into theorem proving
problems.

I We did this with 23 examples, many selected from an earlier
published set of 35.

I The translated SUMO axioms and queries become large,
complex, and difficult to reason with.

I So we did interactive proofs and ask ATPs to prove subgoals in
the proofs.

I What are the ATP results?



Problem Subgoals Zipperposition Vampire E Lash Leo-III

TQG1 50 50 (100%) 50 (100%) 50 (100%) 50 (100%) 50 (100%)
TQG3 20 20 (100%) 20 (100%) 14 (70%) 20 (100%) 8 (40%)
TQG7 195 188 (96%) 185 (95%) 180 (92%) 160 (82%) 158 (81%)
TQG9 19 19 (100%) 19 (100%) 19 (100%) 19 (100%) 19 (100%)
TQG10 112 112 (100%) 112 (100%) 100 (89%) 58 (52%) 96 (86%)
TQG11 100 76 (76%) 39 (39%) 67 (67%) 45 (45%) 13 (13%)
TQG19 37 34 (92%) 22 (59%) 20 (54%) 37 (100%) 11 (30%)
TQG20 41 34 (83%) 22 (54%) 20 (49%) 41 (100%) 13 (32%)
TQG21 207 154 (74%) 150 (72%) 143 (69%) 101 (49%) 56 (27%)
TQG22alt3 319 246 (77%) 214 (67%) 193 (61%) 197 (62%) 136 (43%)
TQG22alt4 322 251 (78%) 218 (68%) 197 (61%) 201 (62%) 142 (44%)
TQG22 315 271 (86%) 224 (71%) 212 (67%) 201 (64%) 142 (45%)
TQG23 67 61 (91%) 67 (100%) 42 (63%) 51 (76%) 38 (57%)
TQG25alt1 910 652 (72%) 526 (58%) 580 (64%) 529 (58%) 246 (27%)
TQG27 7 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%)
TQG28alt1 600 428 (71%) 386 (64%) 349 (58%) 261 (44%) 213 (36%)
TQG30 4 4 (100%) 4 (100%) 3 (75%) 4 (100%) 4 (100%)
TQG33 112 82 (73%) 83 (74%) 79 (71%) 85 (76%) 36 (32%)
TQG45 162 136 (84%) 131 (81%) 128 (79%) 106 (65%) 36 (22%)
TQG46 344 258 (75%) 215 (62%) 225 (65%) 163 (47%) 144 (42%)
TQG47 186 141 (76%) 113 (61%) 109 (59%) 93 (50%) 79 (42%)
TQG48 336 249 (74%) 234 (70%) 219 (65%) 184 (55%) 146 (43%)
wordex 415 315 (76%) 255 (61%) 236 (57%) 284 (68%) 143 (34%)

Total 4880 3788 (78%) 3296 (68%) 3192 (65%) 2897 (59%) 1936 (40%)

Table: Number of Subgoals Proven Automatically in 60 seconds



Some Challenging SUMO Constructs

I Variable arity relations

I Example: partition
I (partition Animal Vertebrate Invertebrate)
I (partition Organism Animal Plant Fungus Microorganism)

I Kappa classes

I (KappaFn ?X (part ?X ?V))

I Row variables and quantified predicates

I (=> (and (subrelation ?REL1 ?REL2) (?REL1 @ROW))
(?REL2 @ROW))

I Implicit type guards.

I In previous: ?REL1 and ?REL2 must Relations.
I and @ROW must be a list appropriate for the two particular

relations.
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Simple Example

I 3 SUMO assertions:

I The “uses” relation is asymmetric:
I (instance uses AsymmetricRelation)

I Every asymmetric relation is irreflexive:
I (subclass AsymmetricRelation IrreflexiveRelation)

I What irreflexive means:
I (=> (instance ?REL IrreflexiveRelation)

(forall (?INST) (not (?REL ?INST ?INST))))

I Idea: instantiate ?REL with uses.
I But it’s used as both a constant and binary relation?
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Simple Example (Partly Translated)

I The 3 SUMO assertions set theoretically:

I (instance uses AsymmetricRelation)
I uses is interpreted as a set we call USES.
I AsymmetricRelation is also interpreted as a set we call

ASYMMETRICRELATION.
I Assertion: USES ∈ ASYMMETRICRELATION.

I (subclass AsymmetricRelation IrreflexiveRelation)
I ASYMMETRICRELATION ⊆ IRREFLEXIVERELATION
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Simple Example (Almost Translated)

I (=> (instance ?REL IrreflexiveRelation)
(forall (?INST) (not (?REL ?INST ?INST))))

I Almost this: ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x).

I Note: USES is a set and r quantifies over sets.
I Why almost? For a few reasons.
I One important reason: type guards.
I The SUMO relation uses expects

I an instance of Object as first argument and
I an instance of Agent as second argument.

I So irreflexivity of USES should be guarded and say

∀x ∈ OBJECT ∩ AGENT.¬USES(x , x)

I But how can we know the guards before we instantiate the r?
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Simple Example (Type Guards)

I Instead of ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x)

I we almost do this:

∀r ∈ IRREFLEXIVERELATION.
∀x ∈ dom1(r) ∩ dom2(r).ap(r)(x , x)

I Here part of the translation asserts the “typing” information:
I dom1(USES) = OBJECT
I dom2(USES) = AGENT
I ap(USES) is the function taking a pair to a boolean.
I Now we should think of the set USES as a tuple (q, n, u, . . .)

where q is the actual relation, n is arity information and u
gives the typing information.



Another Simple Example (Variable Arity)

I uses has a fixed arity of 2.
I partition has variable arity of at least 2.
I Let P be the set interpreting partition.
I Apply ap(P) to 1 argument: a list.

(partition Organism Animal Plant Fungus Microorganism)

becomes

ap(P) (cons ORGANISM
(cons ANIMAL
(cons PLANT
(cons FUNGUS
(cons MICROORGANISM nil))))).



Type Guards for Row Variables

(=> (partition @ROW)
(and (exhaustiveDecomposition @ROW)

(disjointDecomposition @ROW)))

becomes

∀ρ.Γ(ρ)→ ap(P)(ρ)→ ap(ED)(ρ) ∧ ap(DD)(ρ)

where Γ(ρ) is the guard for ρ:

I Length of ρ is at least 2 (min arity of P, ED and DD).
I Each item in ρ is a member of CLASS.



Query

I Query: Must every organism that is not an animal and not a
microogranism be a plant or a fungus? In SUO-KIF:
(query

(forall (?O)
(=>

(instance ?O Organism)
(=>

(not
(instance ?O Animal))

(=>
(not

(instance ?O Microorganism))
(or

(instance ?O Plant)
(instance ?O Fungus)))))))



I For every exhaustive decomposition of a class into a list of
subclasses and member O of the class, there is an element I in
the list of subclasses such that O is in I . In SUMO:
(=>

(exhaustiveDecomposition ?CLASS @ROW)
(forall (?OBJ)

(=>
(instance ?OBJ ?CLASS)
(exists (?ITEM)

(and
(inList ?ITEM (ListFn @ROW))
(instance ?OBJ ?ITEM))))))



Proof sketch:

I Let O be an organism that is not an animal and not a
microorganism.

I There is an exhaustive decomposition of Organism into
Animal, Plant, Fungus and Microorganism.

I There is an I in the list of the four subclasses (Animal, Plant,
Fungus and Microorganism) such that O ∈ I .

I I 6= Animal since O is not an animal.

I If I = Plant, then we’re done.

I If I = Fungus, then we’re done.

I I 6= Microorganism since O is not a microorganism. QED

I This simple sketch of a proof corresponds to 910 subgoals.
I ATPs prove 27% to 72% of the 910 subgoals.
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Kappa Example

Given an atom V , SUMO can represent the class of electrons of V .

...
(instance ?V Atom)
...
(KappaFn ?X

(and
(part ?X ?V)
(instance ?X Electron)))

{X ∈ U|X ∈ OBJECT∧
X ∈ ENTITY∧
bp (ap PART (cons X (cons V nil)))∧
X ∈ ELECTRON}

(1)



Example 1:

I Query: For every atom V and every electron E that is part of
V , E is a member of the class of all electrons of V .



Example 2:
I Query: For every atom V and every electron E in the class of

all electrons of V , E is part of V .
Example 3:
I Query: For every atom V , there is a class C such that for

every electron E , E is part of V if and only if E is in C .



Conclusion

I We can translate SUMO axiom and queries into higher-order
set theory.

I Using higher-order, we can represent SUMO’s κ-class formers
naturally as set separation: {x ∈ U|ψ}.

I In 23 test cases the translated queries are provable
(interactively).

I In 10 cases the translated queries are provable by at least one
higher-order ATP.

I In the other 13 test cases, ATPs can prove a percentage of the
subgoals.

I Future work: modalities


