
Embedding SUMO into Set Theory

Chad E. Brown1 Adam Pease2 Josef Urban1

Czech Technical University in Prague, Czech Republic

Parallax Research, Beavercreek, OH, USA

September 13, 2023

Supported by the Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15_003/ 0000466 and the
European Regional Development Fund and the Ministry of Education, Youth and Sports within the
dedicated program ERC CZ under the project POSTMAN no. LL1902.



Suggested Upper Merged Ontology (SUMO)

I 20+yrs of effort, 20k terms, 80k statements, some in HOL,
many tools

I Is SUMO consistent? Most of the time, as far as we know, at
least in FOL
I Regular testing with E prover’s contradiction finder that

generates 1000’s of tests
I ∼75 test problems in TPTP (x3 variations for different

portions of SUMO)
I Testing with Vampire - GitHub runs Vampire for hours

triggered by SUMO upload
I Simple algorithmic checks for type consistency etc.
I Is any large software system 100% bug-free? Can still be

useful. And contradictions are clear since they don’t use the
conjecture.

I Only a few experiments in HOL

https://www.ontologyportal.org
https://github.com/ontologyportal

https://www.ontologyportal.org
https://github.com/ontologyportal


SUMO to THF

I Work with Chris Benzmüller from 2010
I Mainly a “syntactic” translation
I Didn’t use type guards
I Did expand row variables, variable arity relations
I No possible worlds/Kripke semantics



HOL Relations

I KappaFn
I ProbabilityFn
I attitudeForFormula
I believes
I causesProposition
I conditionalProbability
I confersNorm
I confersObligation
I confersRight
I considers
I containsFormula
I decreasesLikelihood

I deprivesNorm
I describes
I desires
I disapproves
I doubts
I entails
I expects
I hasPurpose
I hasPurposeForAgent
I holdsDuring
I holdsObligation
I holdsRight

I increasesLikelihood

I independentProbability

I knows

I modalAttribute

I permits

I prefers

I prohibits

I rateDetail

I treatedPageDefinition

I visitorParameter



SUMO statistics

Knowledge base statistics
Total Terms Total Axioms Total Rules

16050 228841 6957

Relations: 1705

Ground tuples: 221799
of which are binary: 152069

of which arity more than binary: 69815

Rules: 6957
of which are horn: 2337

first-order: 5146
temporal: 772

modal: 256
epistemic: 86

other higher-order: 804



What did we do and why?

I A set theoretic interpretation get us closer to ensuring
consistency.

I We can also take queries and turn them into theorem proving
problems.

I We did this with 23 examples, many selected from an earlier
published set of 35.

I The translated SUMO axioms and queries become large,
complex, and difficult to reason with.

I So we did interactive proofs and ask ATPs to prove subgoals in
the proofs.

I What are the ATP results?



Problem Subgoals Zipperposition Vampire E Lash Leo-III

TQG1 50 50 (100%) 50 (100%) 50 (100%) 50 (100%) 50 (100%)
TQG3 20 20 (100%) 20 (100%) 14 (70%) 20 (100%) 8 (40%)
TQG7 195 188 (96%) 185 (95%) 180 (92%) 160 (82%) 158 (81%)
TQG9 19 19 (100%) 19 (100%) 19 (100%) 19 (100%) 19 (100%)
TQG10 112 112 (100%) 112 (100%) 100 (89%) 58 (52%) 96 (86%)
TQG11 100 76 (76%) 39 (39%) 67 (67%) 45 (45%) 13 (13%)
TQG19 37 34 (92%) 22 (59%) 20 (54%) 37 (100%) 11 (30%)
TQG20 41 34 (83%) 22 (54%) 20 (49%) 41 (100%) 13 (32%)
TQG21 207 154 (74%) 150 (72%) 143 (69%) 101 (49%) 56 (27%)
TQG22alt3 319 246 (77%) 214 (67%) 193 (61%) 197 (62%) 136 (43%)
TQG22alt4 322 251 (78%) 218 (68%) 197 (61%) 201 (62%) 142 (44%)
TQG22 315 271 (86%) 224 (71%) 212 (67%) 201 (64%) 142 (45%)
TQG23 67 61 (91%) 67 (100%) 42 (63%) 51 (76%) 38 (57%)
TQG25alt1 910 652 (72%) 526 (58%) 580 (64%) 529 (58%) 246 (27%)
TQG27 7 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%)
TQG28alt1 600 428 (71%) 386 (64%) 349 (58%) 261 (44%) 213 (36%)
TQG30 4 4 (100%) 4 (100%) 3 (75%) 4 (100%) 4 (100%)
TQG33 112 82 (73%) 83 (74%) 79 (71%) 85 (76%) 36 (32%)
TQG45 162 136 (84%) 131 (81%) 128 (79%) 106 (65%) 36 (22%)
TQG46 344 258 (75%) 215 (62%) 225 (65%) 163 (47%) 144 (42%)
TQG47 186 141 (76%) 113 (61%) 109 (59%) 93 (50%) 79 (42%)
TQG48 336 249 (74%) 234 (70%) 219 (65%) 184 (55%) 146 (43%)
wordex 415 315 (76%) 255 (61%) 236 (57%) 284 (68%) 143 (34%)

Total 4880 3788 (78%) 3296 (68%) 3192 (65%) 2897 (59%) 1936 (40%)

Table: Number of Subgoals Proven Automatically in 60 seconds



Some Challenging SUMO Constructs

I Variable arity relations

I Example: partition
I (partition Animal Vertebrate Invertebrate)
I (partition Organism Animal Plant Fungus Microorganism)

I Kappa classes

I (KappaFn ?X (part ?X ?V))

I Row variables and quantified predicates

I (=> (and (subrelation ?REL1 ?REL2) (?REL1 @ROW))
(?REL2 @ROW))

I Implicit type guards.

I In previous: ?REL1 and ?REL2 must Relations.
I and @ROW must be a list appropriate for the two particular

relations.



Some Challenging SUMO Constructs

I Variable arity relations
I Example: partition
I (partition Animal Vertebrate Invertebrate)
I (partition Organism Animal Plant Fungus Microorganism)

I Kappa classes

I (KappaFn ?X (part ?X ?V))

I Row variables and quantified predicates

I (=> (and (subrelation ?REL1 ?REL2) (?REL1 @ROW))
(?REL2 @ROW))

I Implicit type guards.

I In previous: ?REL1 and ?REL2 must Relations.
I and @ROW must be a list appropriate for the two particular

relations.



Some Challenging SUMO Constructs

I Variable arity relations
I Example: partition
I (partition Animal Vertebrate Invertebrate)
I (partition Organism Animal Plant Fungus Microorganism)

I Kappa classes
I (KappaFn ?X (part ?X ?V))

I Row variables and quantified predicates

I (=> (and (subrelation ?REL1 ?REL2) (?REL1 @ROW))
(?REL2 @ROW))

I Implicit type guards.

I In previous: ?REL1 and ?REL2 must Relations.
I and @ROW must be a list appropriate for the two particular

relations.



Some Challenging SUMO Constructs

I Variable arity relations
I Example: partition
I (partition Animal Vertebrate Invertebrate)
I (partition Organism Animal Plant Fungus Microorganism)

I Kappa classes
I (KappaFn ?X (part ?X ?V))

I Row variables and quantified predicates
I (=> (and (subrelation ?REL1 ?REL2) (?REL1 @ROW))

(?REL2 @ROW))
I Implicit type guards.

I In previous: ?REL1 and ?REL2 must Relations.
I and @ROW must be a list appropriate for the two particular

relations.



Some Challenging SUMO Constructs

I Variable arity relations
I Example: partition
I (partition Animal Vertebrate Invertebrate)
I (partition Organism Animal Plant Fungus Microorganism)

I Kappa classes
I (KappaFn ?X (part ?X ?V))

I Row variables and quantified predicates
I (=> (and (subrelation ?REL1 ?REL2) (?REL1 @ROW))

(?REL2 @ROW))
I Implicit type guards.

I In previous: ?REL1 and ?REL2 must Relations.
I and @ROW must be a list appropriate for the two particular

relations.



Simple Example

I 3 SUMO assertions:

I The “uses” relation is asymmetric:
I (instance uses AsymmetricRelation)

I Every asymmetric relation is irreflexive:
I (subclass AsymmetricRelation IrreflexiveRelation)

I What irreflexive means:
I (=> (instance ?REL IrreflexiveRelation)

(forall (?INST) (not (?REL ?INST ?INST))))

I Idea: instantiate ?REL with uses.
I But it’s used as both a constant and binary relation?



Simple Example

I 3 SUMO assertions:

I The “uses” relation is asymmetric:
I (instance uses AsymmetricRelation)

I Every asymmetric relation is irreflexive:
I (subclass AsymmetricRelation IrreflexiveRelation)

I What irreflexive means:
I (=> (instance ?REL IrreflexiveRelation)

(forall (?INST) (not (?REL ?INST ?INST))))

I Idea: instantiate ?REL with uses.
I But it’s used as both a constant and binary relation?



Simple Example

I 3 SUMO assertions:

I The “uses” relation is asymmetric:
I (instance uses AsymmetricRelation)

I Every asymmetric relation is irreflexive:
I (subclass AsymmetricRelation IrreflexiveRelation)

I What irreflexive means:
I (=> (instance ?REL IrreflexiveRelation)

(forall (?INST) (not (?REL ?INST ?INST))))

I Idea: instantiate ?REL with uses.
I But it’s used as both a constant and binary relation?



Simple Example

I 3 SUMO assertions:

I The “uses” relation is asymmetric:
I (instance uses AsymmetricRelation)

I Every asymmetric relation is irreflexive:
I (subclass AsymmetricRelation IrreflexiveRelation)

I What irreflexive means:
I (=> (instance ?REL IrreflexiveRelation)

(forall (?INST) (not (?REL ?INST ?INST))))

I Idea: instantiate ?REL with uses.
I But it’s used as both a constant and binary relation?



Simple Example (Partly Translated)

I The 3 SUMO assertions set theoretically:

I (instance uses AsymmetricRelation)
I uses is interpreted as a set we call USES.
I AsymmetricRelation is also interpreted as a set we call

ASYMMETRICRELATION.
I Assertion: USES ∈ ASYMMETRICRELATION.

I (subclass AsymmetricRelation IrreflexiveRelation)
I ASYMMETRICRELATION ⊆ IRREFLEXIVERELATION



Simple Example (Partly Translated)

I The 3 SUMO assertions set theoretically:

I (instance uses AsymmetricRelation)
I uses is interpreted as a set we call USES.
I AsymmetricRelation is also interpreted as a set we call

ASYMMETRICRELATION.
I Assertion: USES ∈ ASYMMETRICRELATION.

I (subclass AsymmetricRelation IrreflexiveRelation)
I ASYMMETRICRELATION ⊆ IRREFLEXIVERELATION



Simple Example (Almost Translated)

I (=> (instance ?REL IrreflexiveRelation)
(forall (?INST) (not (?REL ?INST ?INST))))

I Almost this: ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x).

I Note: USES is a set and r quantifies over sets.
I Why almost? For a few reasons.
I One important reason: type guards.
I The SUMO relation uses expects

I an instance of Object as first argument and
I an instance of Agent as second argument.

I So irreflexivity of USES should be guarded and say

∀x ∈ OBJECT ∩ AGENT.¬USES(x , x)

I But how can we know the guards before we instantiate the r?



Simple Example (Almost Translated)

I (=> (instance ?REL IrreflexiveRelation)
(forall (?INST) (not (?REL ?INST ?INST))))

I Almost this: ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x).
I Note: USES is a set and r quantifies over sets.

I Why almost? For a few reasons.
I One important reason: type guards.
I The SUMO relation uses expects

I an instance of Object as first argument and
I an instance of Agent as second argument.

I So irreflexivity of USES should be guarded and say

∀x ∈ OBJECT ∩ AGENT.¬USES(x , x)

I But how can we know the guards before we instantiate the r?



Simple Example (Almost Translated)

I (=> (instance ?REL IrreflexiveRelation)
(forall (?INST) (not (?REL ?INST ?INST))))

I Almost this: ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x).
I Note: USES is a set and r quantifies over sets.
I Why almost? For a few reasons.

I One important reason: type guards.
I The SUMO relation uses expects

I an instance of Object as first argument and
I an instance of Agent as second argument.

I So irreflexivity of USES should be guarded and say

∀x ∈ OBJECT ∩ AGENT.¬USES(x , x)

I But how can we know the guards before we instantiate the r?



Simple Example (Almost Translated)

I (=> (instance ?REL IrreflexiveRelation)
(forall (?INST) (not (?REL ?INST ?INST))))

I Almost this: ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x).
I Note: USES is a set and r quantifies over sets.
I Why almost? For a few reasons.
I One important reason: type guards.

I The SUMO relation uses expects
I an instance of Object as first argument and
I an instance of Agent as second argument.

I So irreflexivity of USES should be guarded and say

∀x ∈ OBJECT ∩ AGENT.¬USES(x , x)

I But how can we know the guards before we instantiate the r?



Simple Example (Almost Translated)

I (=> (instance ?REL IrreflexiveRelation)
(forall (?INST) (not (?REL ?INST ?INST))))

I Almost this: ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x).
I Note: USES is a set and r quantifies over sets.
I Why almost? For a few reasons.
I One important reason: type guards.
I The SUMO relation uses expects

I an instance of Object as first argument and
I an instance of Agent as second argument.

I So irreflexivity of USES should be guarded and say

∀x ∈ OBJECT ∩ AGENT.¬USES(x , x)

I But how can we know the guards before we instantiate the r?



Simple Example (Almost Translated)

I (=> (instance ?REL IrreflexiveRelation)
(forall (?INST) (not (?REL ?INST ?INST))))

I Almost this: ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x).
I Note: USES is a set and r quantifies over sets.
I Why almost? For a few reasons.
I One important reason: type guards.
I The SUMO relation uses expects

I an instance of Object as first argument and
I an instance of Agent as second argument.

I So irreflexivity of USES should be guarded and say

∀x ∈ OBJECT ∩ AGENT.¬USES(x , x)

I But how can we know the guards before we instantiate the r?



Simple Example (Almost Translated)

I (=> (instance ?REL IrreflexiveRelation)
(forall (?INST) (not (?REL ?INST ?INST))))

I Almost this: ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x).
I Note: USES is a set and r quantifies over sets.
I Why almost? For a few reasons.
I One important reason: type guards.
I The SUMO relation uses expects

I an instance of Object as first argument and
I an instance of Agent as second argument.

I So irreflexivity of USES should be guarded and say

∀x ∈ OBJECT ∩ AGENT.¬USES(x , x)

I But how can we know the guards before we instantiate the r?



Simple Example (Type Guards)

I Instead of ∀r ∈ IRREFLEXIVERELATION.∀x .¬r(x , x)

I we almost do this:

∀r ∈ IRREFLEXIVERELATION.
∀x ∈ dom1(r) ∩ dom2(r).ap(r)(x , x)

I Here part of the translation asserts the “typing” information:
I dom1(USES) = OBJECT
I dom2(USES) = AGENT
I ap(USES) is the function taking a pair to a boolean.
I Now we should think of the set USES as a tuple (q, n, u, . . .)

where q is the actual relation, n is arity information and u
gives the typing information.



Another Simple Example (Variable Arity)

I uses has a fixed arity of 2.
I partition has variable arity of at least 2.
I Let P be the set interpreting partition.
I Apply ap(P) to 1 argument: a list.

(partition Organism Animal Plant Fungus Microorganism)

becomes

ap(P) (cons ORGANISM
(cons ANIMAL
(cons PLANT
(cons FUNGUS
(cons MICROORGANISM nil))))).



Type Guards for Row Variables

(=> (partition @ROW)
(and (exhaustiveDecomposition @ROW)

(disjointDecomposition @ROW)))

becomes

∀ρ.Γ(ρ)→ ap(P)(ρ)→ ap(ED)(ρ) ∧ ap(DD)(ρ)

where Γ(ρ) is the guard for ρ:

I Length of ρ is at least 2 (min arity of P, ED and DD).
I Each item in ρ is a member of CLASS.



Query

I Query: Must every organism that is not an animal and not a
microogranism be a plant or a fungus? In SUO-KIF:
(query

(forall (?O)
(=>

(instance ?O Organism)
(=>

(not
(instance ?O Animal))

(=>
(not

(instance ?O Microorganism))
(or

(instance ?O Plant)
(instance ?O Fungus)))))))



I For every exhaustive decomposition of a class into a list of
subclasses and member O of the class, there is an element I in
the list of subclasses such that O is in I . In SUMO:
(=>

(exhaustiveDecomposition ?CLASS @ROW)
(forall (?OBJ)

(=>
(instance ?OBJ ?CLASS)
(exists (?ITEM)

(and
(inList ?ITEM (ListFn @ROW))
(instance ?OBJ ?ITEM))))))



Proof sketch:

I Let O be an organism that is not an animal and not a
microorganism.

I There is an exhaustive decomposition of Organism into
Animal, Plant, Fungus and Microorganism.

I There is an I in the list of the four subclasses (Animal, Plant,
Fungus and Microorganism) such that O ∈ I .

I I 6= Animal since O is not an animal.

I If I = Plant, then we’re done.

I If I = Fungus, then we’re done.

I I 6= Microorganism since O is not a microorganism. QED

I This simple sketch of a proof corresponds to 910 subgoals.
I ATPs prove 27% to 72% of the 910 subgoals.



Proof sketch:

I Let O be an organism that is not an animal and not a
microorganism.

I There is an exhaustive decomposition of Organism into
Animal, Plant, Fungus and Microorganism.

I There is an I in the list of the four subclasses (Animal, Plant,
Fungus and Microorganism) such that O ∈ I .

I I 6= Animal since O is not an animal.

I If I = Plant, then we’re done.

I If I = Fungus, then we’re done.

I I 6= Microorganism since O is not a microorganism. QED

I This simple sketch of a proof corresponds to 910 subgoals.
I ATPs prove 27% to 72% of the 910 subgoals.



Kappa Example

Given an atom V , SUMO can represent the class of electrons of V .

...
(instance ?V Atom)
...
(KappaFn ?X

(and
(part ?X ?V)
(instance ?X Electron)))

{X ∈ U|X ∈ OBJECT∧
X ∈ ENTITY∧
bp (ap PART (cons X (cons V nil)))∧
X ∈ ELECTRON}

(1)



Example 1:

I Query: For every atom V and every electron E that is part of
V , E is a member of the class of all electrons of V .



Example 2:
I Query: For every atom V and every electron E in the class of

all electrons of V , E is part of V .
Example 3:
I Query: For every atom V , there is a class C such that for

every electron E , E is part of V if and only if E is in C .



Conclusion

I We can translate SUMO axiom and queries into higher-order
set theory.

I Using higher-order, we can represent SUMO’s κ-class formers
naturally as set separation: {x ∈ U|ψ}.

I In 23 test cases the translated queries are provable
(interactively).

I In 10 cases the translated queries are provable by at least one
higher-order ATP.

I In the other 13 test cases, ATPs can prove a percentage of the
subgoals.

I Future work: modalities


