Testing Learning from Equational Proofs

Chad E. Brown

Czech Technical University in Prague

Abstract. Keywords:

We describe a set of equational theorem proving problems. In every case the
conjecture is provable from the ATM axioms [2]. Indeed we have at least one proof
(by a chain of at most 10 equational steps) for each problem. The purpose of
this set of problems is to evaluate how well different machine learning techniques
can learn to approximate how many equational steps are required to complete
a proof. To this end, we define a set of terms and a basic proof calculus using
only reflexivity and paramodulation.'.

1 Terms and Contexts

Let W& and V3 be two disjoint countably infinite sets of variables. We call the
variables Vy universal variables and the variables in V3 existential variables. We
use x, v, z, w, u, v; to range over universal variables and X, Y, Z, W, U, V; to range
over existential variables. The set T of terms (where we use s,t to range over
terms) is given by the following grammar:

x| Xle|(s - O)[(s\D)[(/)| T (s,)| L(s, t1, t2) | R(s, 11, t2) | K (s, 8)|a(ts, ta, t3).

We write Vy(s) for the finite set of universal variables that occur in s and V3(s)
for the finite set of existential variables that occur in s

An equation is a pair of terms written as s = t.

When we are trying to prove an equation, the intended interpretation is
Vz---3X--+-s =t where x - - - lists the universal variables in s and X - - - lists the
existential variables in t.

We will also assume equations intended to be used to prove new equations.
Each of the assumed equations has no universal variables free, but only existen-
tial variables. An example is the equation (X -e) = X. Since assuming equations
is dual to proving equations, the intended interpretation here is VX.(X -e) = X.
While this may seem counterintuitive at first, an easy way to justify the ter-
minology is to not that proving ¢ follows from VX.(X - e) = X is classically
equivalent to proving the conjecture

BEX.(X-e)#X) Ve

! The data should be available from http: //grid01i.ciirc.cvut.cz/~chad/aimleapinfo/

http://grid01.ciirc.cvut.cz/~chad/aimleapinfo/

2 Chad E. Brown

In all of the problems in the set we will assume the same 87 equations. 12 of
these equations are loop and AIM axioms [2], 5 of these equations are definiting
equations for 7', L, R, K and a, and the other 70 are equations that deductively
follow from the first 17.

In order to describe paramodulation inferences, we will need the notion of a
contezt. Informally, a context is a “term with a hole.” We use C' to range over
contexts. Contexts are generated by the following grammar:

o[(C-1)[(s - CY(C\(S\O)W(C/1)|(s/C)T(C, 1)|T(s,C)
|L(C\ty1,t2)|L(s, C,t)|L(s,t, C)|R(C,t1,t2)|R(s,C, t)|R(s,t,C)
|K(C7 t)|K(S, C)|(Z(C, 1, t2)|a(t17 Ca t2)|a(t17 l2, C)

A context C' can be combined with a term ¢ to give a term C[t] in an obvious
way (by recursively traversing C' to put ¢ in the hole o).

A substitution 6 is a partial function sending variables to terms, and 0(t) is
defined in the obvious way.

We say 6 is a unifier of s and t if dom(#) C V3 and 0(s) = 6(t). We say s
and t are unifiable if there exists a unifier of s and ¢.

An existential renaming of s = t is 6(s) = 6(t) where the domain of 6 is
existential variables in s and ¢, (X) € V3 and 0(X) # 0(Y) if X # Y if
X.,Y € dom(#).

2 Equational Provability

Let s =t be an equation and s; = t; be an equation with no universal variables.
Assume (V3(s)UV3(t))N(Va(s1)UV3(t1)) = 0. We say so = to is a paramodulant
of s =t using s; = t1 if one of the following holds:

— There is a context C' and dom(f) C V3 such that 6(s) is C[0(s1)], s2 is
C[0(t1)] and to is t. (Informally, we rewrite from left to right on the left.)

— There is a context C' and dom(6) C V3 such that 0(t) is C[0(s1)], t2 is C[0(¢1)]
and s is s. (Informally, we rewrite from left to right on the right.)

— There is a context C' and dom(d) C V3 such that 0(s) is C[0(t1)], sz is
C[0(s1)] and to is t. (Informally, we rewrite from right to left on the left.)

— There is a context C' and dom(6) C V3 such that 6(t) is C[0(t1)], t2 is C[0(s1)]
and s9 is s. (Informally, we rewrite from right to left on the right.)

If (Va(s) UVa(t)) N (Va(s1) U Va(t1)) # 0, then we simply say there are no
paramodulants of s = t using s; = ¢; (by convention). The idea is that we
only compute paramodulants after ensuring the sets of existential variables are
disjoint.

Let A be a set of equations with no universal variables. Let s = ¢ be an
equation. A paramodulant of s =t (using A) is any equation s = to that is a
paramodulant of s = ¢ using s; = t; where s; = t; is an existential renaming
of an equation in A. Up to renaming of existential variables, there are finitely
many paramodulants if A is finite.

We define what it means for an equation to be provable in n steps (from A)
as follows.

Testing Learning from Equational Proofs 3

— If s and ¢ are unifiable, then s = ¢ is provable in 0 steps.
— s =t is provable in n+ 1 steps if there exists a paramodulant of s = ¢ (using
A) provable in n steps.

It is easy to see that provability is stable under renaming variables so we only
need to consider one paramodulant up to the choice of existential variables. This
makes the search for a proof finitely branching.

3 Proof Search

Let A be a set of equations with no universal variables. In our dataset this A is
a fixed set of 87 equations. Suppose we wish to check if s = ¢ is provable in n
steps from A. An obvious algorithm is the following;:

1. If s and ¢ are unifiable, then report success.

2. If n = 0, then report failure.

3. Compute a finite set of paramodulants sy = t5 from A, obtaining a represen-
tative up to renaming of existential variables for each possible paramodulant.

4. Order these paramodulants in some way and for each one ask if so = t5 is
provable in n — 1 steps from A.

While the algorithm will terminate in principle, it often will not in practice.
Estimates based on the dataset show that there are, on average, roughly 500
possible paramodulants at each step. Traversing the entire search space to check
if an equation is provable in 10 steps is obviously unrealistic.

If we have an oracle that can accurately estimate how many steps are required
to prove s = t, then we can use this to order the paramodulants above. Doing this
would ensure that if s = ¢ is provable in n steps, then the algorithm will never fail
(resulting in backtracking) since the oracle will always choose a paramodulant
provable in n — 1 (or fewer) steps.

Having a true oracle is unrealistic, but if a function could provide a good
estimate of the number of required steps, then the algorithm should require less
backtracking. Our goal is to use different techniques to learn such a function and
then use the algorithm above to measure how good the estimate given by the
function is.

We can force the algorithm to terminate and get information about how
much search was required by having a notion of abstract time. Informally, the
abstract time used by a search for a proof is the number of times a paramodulant
is chosen in the fourth step of the algorithm.

This algorithm is implemented in the aimleap prover. In the implementation
the abstract time is simply a counter incremented when a paramodulant is chosen
and the recursive call is made and search terminates if a given abstract time limit
is reached. The function for computing “distance” from s to ¢ (estimating the
number of paramodulation steps required to prove s = t) generally works as
follows:

4 Chad E. Brown

— If s is ¢, then the distance is 0. (Note: this could be generalized to give 0 if
s and t are unifiable.)

— Otherwise, if a port to connect to an advisor was given, then ask the advisor
to estimate the distance.

— If no port to an advisor was given but some other local function was indi-
cated, then use that function. (For example, we can give a constant to always
return as the distance.)

4 The Dataset

We fix A to be a set of 87 equations as mentioned above. 17 of these are AIM
axioms and definitions while the remaining are equations that follow from these
AIM equations.

Veroff has obtained a large number of AIM proofs using Prover9 [3]. Analysing
some of these proofs it was possible to obtain 3468 equations provable from the
equations in 4 within 2-10 paramodulation steps. In some cases there were mul-
tiple proofs of the same equation, and in most cases it was possible to consider
the paramodulation proof in at least two ways (always paramodulating into
the left or always paramodulating into the right). As a consequence there were
7066 proofs, with at least one proof for each equation. The length (number of
paramodulation steps) in the initial “training” proofs are given in Table 1. (The
number of problems adds up to more than 3468 since some equations have proofs
of different length and so are counted twice.)

Length|{Number of Proofs|Number of Problems
2 3284 (46.5%) 1641 (47.3%)
3 1744 (25.7%) 869 (25%)
4 708 (10%) 353 (10.2%)
5 573 (8.1%) 284 (8.2%)
6 332 (4.7%) 166 (4.8%)
7 168 (2.4%) 83 (2.4%)
8 156 (2.2%) 78 (2.2%)
9 58 (0.8%) 29 (0.8%)
10 32 (0.5%) 16 (0.5%)

Table 1. Lengths of Training Proofs

These pure paramodulation proofs were analyzed to give all the intermediate
forms. That is, at each step there was a new goal equation s = ¢. The initial goal
never contains existential variables (i.e., one is always proving Vz - -+ s = t), but
existential variables may be introduced via paramodulation.

Consider the following example from the data set (p9_9a20c522ba):

L(z, e/, x) = ((x - (e/x))\z)

Testing Learning from Equational Proofs 5

There are two training proofs for this equation, both of which use the following
two equations from A:

id2: (Y/X)\Y)=X
prop da958b3f: L(X\e, X,Y) = ((Y - X)\Y)

The first training proof paramodulates with id2 from right to left on the left
hand side to obtain the intermediate subgoal

LY/ 2)\Y, efz,x) = ((x - (e/x))\r).

Note that this subgoal has an existential variable Y and should be interpreted
as trying to prove

Ve Y. L(Y/2)\Y,e/x,z) = ((x - (e/z))\z).
The second step of the first proof paramodulates with prop da958b3f from left

to right on the left hand side of the subgoal (sending the Y from the subgoal to
e in when unifying) to obtain the new subgoal

((z - (e/z))\z) = ((x - (¢/x))\2).

Since the two sides are the same (hence trivially unifiable), we are done.
The second training proof proceeds in the other direction and does not in-
troduce existential variables. Starting from the initial goal

L(z,efz,x) = ((x - (e/x))\x)

we paramodulate with prop da958b3f from right to left on the right hand side
to obtain the subgoal

L(z,e/z,x) = L((e/z)\e,e/x, x).

We then paramodulate with id2 from left to right on the right hand side to
obtain the subgoal
L(x,e/x,x) = L(x,e/x,x).

Since the two sides are the same, we are done.
From these two training proofs, we know there are one step proofs of

L((Y/z)\Y, e/, x) = ((z - (e/x))\x)
and
L(z,e/x,x) = L((e/x)\e, e/x,).

We also know there is a two step proof of the initial goal

L(z, e/, x) = ((x - (¢/x))\2).

By replaying the 7066 proofs of the 3468 equations we obtain data about
which top level and intermediate equations are provable in n steps. This data
could be used to train a machine learning algorithm to learn to estimate the
number of steps required to prove the equation.

6 Chad E. Brown

5 Initial Results

We have run aimleap and other ATPs on the 3468 problems and we summarize
the results here. aimleap always searched for a proof of length at most 10 (i.e.,
the depth of the search tree was always bounded at 10) and was always given
an abstract time limit of 100.

As a sanity test, an “oracle” advisor was used first. This advisor returns the
known distance for goals and subgoals that were seen in the training proofs.
For other equations it returned a high distance of 50 (essentially forcing these
equations to be pruned from the paramodulant options). We call this the “rote
learning” advisor.

As expected, the prover could reprove all 3468 problems given the full rote
learned information. Furthermore, no backtracking was required and so the max-
imum abstract time was 10. In some cases, shorter proofs than the training proofs
were found. In 132 cases, new proofs involving only one paramodulation step were
found. Table 2 lists the number of equations proven within n steps using this
oracle advisor.

Length{Number of Problems
1 132 (3.8%)
1912 (55.1%)
803 (23.2%)
314 (9.1%)
147 (4.2%)
74 (2.1%)
29 (0.8%)
29 (0.8%)
17 (0.5%)
11 (0.3%)

© 00 ~J O Ut i W N

0.5%
0.3%

—_
[en)

Table 2. Lengths of Proofs using Oracle

To do a cross-validation test, the training data was split into 10 parts. For
each part we create a file of distance data to be given to the advisor. For each
problem we ran aimleap with an advisor using the rote learned distance data
from the other 9 parts. We gave an abstract time limit of 100. 800 (21.9%)
problems were proven in the cross-validation test.

The next test we tried was to simply give a constant distance. To be more
precise, if we ask for the distance between two terms s and ¢, then we return 0
if s is precisely ¢ and return ¢ otherwise, for a fixed ¢. The results from trying
this with an abstract time limit of 100 and ¢ varying from 0 to 10 is shown in
Table 3. A few remarks are in order. In every case except 0, at least the 132
problems with one step proofs were solved. The reason for this is that the one
step paramodulant solving the problem is generated as an option at the first
step. Since the paramodulant is of the form s = s, the distance function will give

Testing Learning from Equational Proofs 7

the value 0, preferring this option over all other options with distance ¢ > 0.
After this option is chosen, the proof is complete (in one abstract time step). On
the other hand, if ¢ = 0, there is no reason to prefer the option s = s over the
other options. The only hope would be if the one step option happened to be the
first option, and this never happened in practice. Hence using a constant distance
function giving 0 solved no problems. A surprising result is that constantly giving
a distance of 9 solved just over half the problems. In addition to solving the 132
problems with one step proofs, giving a constant distance of 9 finds many two
step proofs. Suppose s =t is a goal with a two step proof. Many paramodulants
are generated at the first step and are all estimated to require a 9 step proof.
For each paramodulant chosen we get a new subgoal s; = t5 and generate its
paramodulants. If one of these paramodulants is of the form s3 = s3, then the
estimated distance will be 0, the option will be chosen, and the search succeeds
(finding the two step proof). If none of the paramodulants is of this form, then
all options will have estimated distance 9. Since we are searching for a proof of
at most length 10 and we have already performed one paramodulation, all these
options will be filtered and the search will backtrack. In essence, the search
proceeds by trying each possible paramodulation and then checking if one more
paramodulation will complete the search.

All other constant distance functions performed poorly, solving at most a few
more than the problems with one step proofs.

Constant Distance|Number of Problems
0
(3.9%)
(3.9%)
135 (3.9%)
135 (3.9%)
135 (3.9%)
(3.9%)
(3.9%)
(
(
(

135
135

135 (3.9%
135 (3.9%
138 (4.0%)
1739 (50.1%)
132 (3.8%)

© 00 ~J O UL WK~ O

—_
[e=)

Table 3. Results using Constant Distance

To compare the results with established automated theorem provers, the
same 3468 problems were given to Prover9 [3], E [4] and Waldmeister [1]. Each
prover was given 60s to solve the problem and default settings were used. E was
run with the -auto-schedule option. The results are summarized in Table 4.
For each of the problems with a known one or two step proof (see Table 2), at
least one ATP finds a proof. For 168 the 803 problems (20.9%) with a known
three step proof (see Table 2), none of the ATPs finds a proof. It is worth noting
that in some cases an ATP did not even find a proof for some of the 132 problems

8 Chad E. Brown

with a known one step proof. This happened in one case for Waldmeister and in
74 cases for Prover9. E solved all 132 of these problems.

ATP |Problems Solved (60s)

E 2684 (77.4%)
Waldmeister 2170 (62.6%)
Prover9 2037 (58.7%)
At Least One 3079 (88.8%)
All 3 1384 (39.9%)

Table 4. ATP Results

6 To be continued

Next we should try training a variety of machine learning algorithms on the
distance data and try aimleap with advisors based on the learned functions. We
could also try alternative search procedures to aimleap. We could also consider
extending the dataset and so on.

References

1. Hillenbrand, T., Jaeger, A., Lochner, B.: Waldmeister - Improvements in Perfor-
mance and Ease of Use. In: Ganzinger, H. (ed.) Proceedings of the 16th Interna-
tional Conference on Automated Deduction. pp. 232-236. No. 1632 in Lecture Notes
in Artificial Intelligence, Springer-Verlag (1999)

2. Kinyon, M.K., Veroff, R., Vojtéchovsky, P.: Loops with abelian inner mapping
groups: An application of automated deduction. In: Bonacina, M.P., Stickel, M.E.
(eds.) Automated Reasoning and Mathematics - Essays in Memory of William W.
McCune. Lecture Notes in Computer Science, vol. 7788, pp. 151 164. Springer
(2013)

3. McCune, W.: Prover9 and maced (2005-2010),
http://www.cs.unm.edu/ “mccune/prover9/

4. Schulz, S.: System Description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) Proc. of the 19th LPAR, Stellenbosch. LNCS, vol. 8312. Springer (2013)

	Testing Learning from Equational Proofs
	Terms and Contexts
	Equational Provability
	Proof Search
	The Dataset
	Initial Results
	To be continued

