
Testing Learning from Equational Proofs

Chad E. Brown

Cze
h Te
hni
al University in Prague

Abstra
t. Keywords:

We des
ribe a set of equational theorem proving problems. In every
ase the

onje
ture is provable from the AIM axioms [2℄. Indeed we have at least one proof

(by a
hain of at most 10 equational steps) for ea
h problem. The purpose of

this set of problems is to evaluate how well di�erent ma
hine learning te
hniques

an learn to approximate how many equational steps are required to
omplete

a proof. To this end, we de�ne a set of terms and a basi
 proof
al
ulus using

only re�exivity and paramodulation.

1

.

1 Terms and Contexts

Let V∀ and V∃ be two disjoint
ountably in�nite sets of variables. We
all the

variables V∀ universal variables and the variables in V∃ existential variables. We

use x, y, z, w, u, vi to range over universal variables and X,Y, Z,W,U, Vi to range

over existential variables. The set T of terms (where we use s, t to range over

terms) is given by the following grammar:

x|X|e|(s · t)|(s\t)|(s/t)|T (s, t)|L(s, t1, t2)|R(s, t1, t2)|K(s, t)|a(t1, t2, t3).

We write V∀(s) for the �nite set of universal variables that o

ur in s and V∃(s)
for the �nite set of existential variables that o

ur in s

An equation is a pair of terms written as s = t.
When we are trying to prove an equation, the intended interpretation is

∀x · · · ∃X · · · s = t where x · · · lists the universal variables in s and X · · · lists the
existential variables in t.

We will also assume equations intended to be used to prove new equations.

Ea
h of the assumed equations has no universal variables free, but only existen-

tial variables. An example is the equation (X ·e) = X. Sin
e assuming equations

is dual to proving equations, the intended interpretation here is ∀X.(X · e) = X.

While this may seem
ounterintuitive at �rst, an easy way to justify the ter-

minology is to not that proving ϕ follows from ∀X.(X · e) = X is
lassi
ally

equivalent to proving the
onje
ture

(∃X.(X · e) 6= X) ∨ ϕ.

1

The data should be available from http://grid01.
iir
.
vut.
z/~
had/aimleapinfo/

http://grid01.ciirc.cvut.cz/~chad/aimleapinfo/

2 Chad E. Brown

In all of the problems in the set we will assume the same 87 equations. 12 of

these equations are loop and AIM axioms [2℄, 5 of these equations are de�niting

equations for T , L, R, K and a, and the other 70 are equations that dedu
tively

follow from the �rst 17.

In order to des
ribe paramodulation inferen
es, we will need the notion of a

ontext . Informally, a
ontext is a �term with a hole.� We use C to range over

ontexts. Contexts are generated by the following grammar:

•|(C · t)|(s · C)|(C\t)|(s\C)|(C/t)|(s/C)|T (C, t)|T (s, C)
|L(C, t1, t2)|L(s, C, t)|L(s, t, C)|R(C, t1, t2)|R(s, C, t)|R(s, t, C)

|K(C, t)|K(s, C)|a(C, t1, t2)|a(t1, C, t2)|a(t1, t2, C)

A
ontext C
an be
ombined with a term t to give a term C[t] in an obvious

way (by re
ursively traversing C to put t in the hole •).
A substitution θ is a partial fun
tion sending variables to terms, and θ(t) is

de�ned in the obvious way.

We say θ is a uni�er of s and t if dom(θ) ⊆ V∃ and θ(s) = θ(t). We say s
and t are uni�able if there exists a uni�er of s and t.

An existential renaming of s = t is θ(s) = θ(t) where the domain of θ is

existential variables in s and t, θ(X) ∈ V∃ and θ(X) 6= θ(Y) if X 6= Y if

X,Y ∈ dom(θ).

2 Equational Provability

Let s = t be an equation and s1 = t1 be an equation with no universal variables.

Assume (V∃(s)∪V∃(t))∩ (V∃(s1)∪V∃(t1)) = ∅. We say s2 = t2 is a paramodulant

of s = t using s1 = t1 if one of the following holds:

� There is a
ontext C and dom(θ) ⊆ V∃ su
h that θ(s) is C[θ(s1)], s2 is

C[θ(t1)] and t2 is t. (Informally, we rewrite from left to right on the left.)

� There is a
ontext C and dom(θ) ⊆ V∃ su
h that θ(t) is C[θ(s1)], t2 is C[θ(t1)]
and s2 is s. (Informally, we rewrite from left to right on the right.)

� There is a
ontext C and dom(θ) ⊆ V∃ su
h that θ(s) is C[θ(t1)], s2 is

C[θ(s1)] and t2 is t. (Informally, we rewrite from right to left on the left.)

� There is a
ontext C and dom(θ) ⊆ V∃ su
h that θ(t) is C[θ(t1)], t2 is C[θ(s1)]
and s2 is s. (Informally, we rewrite from right to left on the right.)

If (V∃(s) ∪ V∃(t)) ∩ (V∃(s1) ∪ V∃(t1)) 6= ∅, then we simply say there are no

paramodulants of s = t using s1 = t1 (by
onvention). The idea is that we

only
ompute paramodulants after ensuring the sets of existential variables are

disjoint.

Let A be a set of equations with no universal variables. Let s = t be an

equation. A paramodulant of s = t (using A) is any equation s2 = t2 that is a

paramodulant of s = t using s1 = t1 where s1 = t1 is an existential renaming

of an equation in A. Up to renaming of existential variables, there are �nitely

many paramodulants if A is �nite.

We de�ne what it means for an equation to be provable in n steps (from A)

as follows.

Testing Learning from Equational Proofs 3

� If s and t are uni�able, then s = t is provable in 0 steps.

� s = t is provable in n+1 steps if there exists a paramodulant of s = t (using
A) provable in n steps.

It is easy to see that provability is stable under renaming variables so we only

need to
onsider one paramodulant up to the
hoi
e of existential variables. This

makes the sear
h for a proof �nitely bran
hing.

3 Proof Sear
h

Let A be a set of equations with no universal variables. In our dataset this A is

a �xed set of 87 equations. Suppose we wish to
he
k if s = t is provable in n
steps from A. An obvious algorithm is the following:

1. If s and t are uni�able, then report su

ess.

2. If n = 0, then report failure.

3. Compute a �nite set of paramodulants s2 = t2 from A, obtaining a represen-

tative up to renaming of existential variables for ea
h possible paramodulant.

4. Order these paramodulants in some way and for ea
h one ask if s2 = t2 is

provable in n− 1 steps from A.

While the algorithm will terminate in prin
iple, it often will not in pra
ti
e.

Estimates based on the dataset show that there are, on average, roughly 500

possible paramodulants at ea
h step. Traversing the entire sear
h spa
e to
he
k

if an equation is provable in 10 steps is obviously unrealisti
.

If we have an ora
le that
an a

urately estimate how many steps are required

to prove s = t, then we
an use this to order the paramodulants above. Doing this

would ensure that if s = t is provable in n steps, then the algorithm will never fail

(resulting in ba
ktra
king) sin
e the ora
le will always
hoose a paramodulant

provable in n− 1 (or fewer) steps.

Having a true ora
le is unrealisti
, but if a fun
tion
ould provide a good

estimate of the number of required steps, then the algorithm should require less

ba
ktra
king. Our goal is to use di�erent te
hniques to learn su
h a fun
tion and

then use the algorithm above to measure how good the estimate given by the

fun
tion is.

We
an for
e the algorithm to terminate and get information about how

mu
h sear
h was required by having a notion of abstra
t time. Informally, the

abstra
t time used by a sear
h for a proof is the number of times a paramodulant

is
hosen in the fourth step of the algorithm.

This algorithm is implemented in the aimleap prover. In the implementation

the abstra
t time is simply a
ounter in
remented when a paramodulant is
hosen

and the re
ursive
all is made and sear
h terminates if a given abstra
t time limit

is rea
hed. The fun
tion for
omputing �distan
e� from s to t (estimating the

number of paramodulation steps required to prove s = t) generally works as

follows:

4 Chad E. Brown

� If s is t, then the distan
e is 0. (Note: this
ould be generalized to give 0 if

s and t are uni�able.)
� Otherwise, if a port to
onne
t to an advisor was given, then ask the advisor

to estimate the distan
e.

� If no port to an advisor was given but some other lo
al fun
tion was indi-

ated, then use that fun
tion. (For example, we
an give a
onstant to always

return as the distan
e.)

4 The Dataset

We �x A to be a set of 87 equations as mentioned above. 17 of these are AIM

axioms and de�nitions while the remaining are equations that follow from these

AIM equations.

Vero� has obtained a large number of AIM proofs using Prover9 [3℄. Analysing

some of these proofs it was possible to obtain 3468 equations provable from the

equations in A within 2-10 paramodulation steps. In some
ases there were mul-

tiple proofs of the same equation, and in most
ases it was possible to
onsider

the paramodulation proof in at least two ways (always paramodulating into

the left or always paramodulating into the right). As a
onsequen
e there were

7066 proofs, with at least one proof for ea
h equation. The length (number of

paramodulation steps) in the initial �training� proofs are given in Table 1. (The

number of problems adds up to more than 3468 sin
e some equations have proofs

of di�erent length and so are
ounted twi
e.)

Length Number of Proofs Number of Problems

2 3284 (46.5%) 1641 (47.3%)

3 1744 (25.7%) 869 (25%)

4 708 (10%) 353 (10.2%)

5 573 (8.1%) 284 (8.2%)

6 332 (4.7%) 166 (4.8%)

7 168 (2.4%) 83 (2.4%)

8 156 (2.2%) 78 (2.2%)

9 58 (0.8%) 29 (0.8%)

10 32 (0.5%) 16 (0.5%)

Table 1. Lengths of Training Proofs

These pure paramodulation proofs were analyzed to give all the intermediate

forms. That is, at ea
h step there was a new goal equation s = t. The initial goal
never
ontains existential variables (i.e., one is always proving ∀x · · · s = t), but
existential variables may be introdu
ed via paramodulation.

Consider the following example from the data set (p9_9a20c522ba):

L(x, e/x, x) = ((x · (e/x))\x)

Testing Learning from Equational Proofs 5

There are two training proofs for this equation, both of whi
h use the following

two equations from A:

id2: ((Y/X)\Y) = X
prop_da958b3f: L(X\e,X, Y) = ((Y ·X)\Y)

The �rst training proof paramodulates with id2 from right to left on the left

hand side to obtain the intermediate subgoal

L((Y/x)\Y, e/x, x) = ((x · (e/x))\x).

Note that this subgoal has an existential variable Y and should be interpreted

as trying to prove

∀x.∃Y.L((Y/x)\Y, e/x, x) = ((x · (e/x))\x).

The se
ond step of the �rst proof paramodulates with prop_da958b3f from left

to right on the left hand side of the subgoal (sending the Y from the subgoal to

e in when unifying) to obtain the new subgoal

((x · (e/x))\x) = ((x · (e/x))\x).

Sin
e the two sides are the same (hen
e trivially uni�able), we are done.

The se
ond training proof pro
eeds in the other dire
tion and does not in-

trodu
e existential variables. Starting from the initial goal

L(x, e/x, x) = ((x · (e/x))\x)

we paramodulate with prop_da958b3f from right to left on the right hand side

to obtain the subgoal

L(x, e/x, x) = L((e/x)\e, e/x, x).

We then paramodulate with id2 from left to right on the right hand side to

obtain the subgoal

L(x, e/x, x) = L(x, e/x, x).

Sin
e the two sides are the same, we are done.

From these two training proofs, we know there are one step proofs of

L((Y/x)\Y, e/x, x) = ((x · (e/x))\x)

and

L(x, e/x, x) = L((e/x)\e, e/x, x).

We also know there is a two step proof of the initial goal

L(x, e/x, x) = ((x · (e/x))\x).

By replaying the 7066 proofs of the 3468 equations we obtain data about

whi
h top level and intermediate equations are provable in n steps. This data

ould be used to train a ma
hine learning algorithm to learn to estimate the

number of steps required to prove the equation.

6 Chad E. Brown

5 Initial Results

We have run aimleap and other ATPs on the 3468 problems and we summarize

the results here. aimleap always sear
hed for a proof of length at most 10 (i.e.,

the depth of the sear
h tree was always bounded at 10) and was always given

an abstra
t time limit of 100.

As a sanity test, an �ora
le� advisor was used �rst. This advisor returns the

known distan
e for goals and subgoals that were seen in the training proofs.

For other equations it returned a high distan
e of 50 (essentially for
ing these

equations to be pruned from the paramodulant options). We
all this the �rote

learning� advisor.

As expe
ted, the prover
ould reprove all 3468 problems given the full rote

learned information. Furthermore, no ba
ktra
king was required and so the max-

imum abstra
t time was 10. In some
ases, shorter proofs than the training proofs

were found. In 132
ases, new proofs involving only one paramodulation step were

found. Table 2 lists the number of equations proven within n steps using this

ora
le advisor.

Length Number of Problems

1 132 (3.8%)

2 1912 (55.1%)

3 803 (23.2%)

4 314 (9.1%)

5 147 (4.2%)

6 74 (2.1%)

7 29 (0.8%)

8 29 (0.8%)

9 17 (0.5%)

10 11 (0.3%)

Table 2. Lengths of Proofs using Ora
le

To do a
ross-validation test, the training data was split into 10 parts. For

ea
h part we
reate a �le of distan
e data to be given to the advisor. For ea
h

problem we ran aimleap with an advisor using the rote learned distan
e data

from the other 9 parts. We gave an abstra
t time limit of 100. 800 (21.9%)

problems were proven in the
ross-validation test.

The next test we tried was to simply give a
onstant distan
e. To be more

pre
ise, if we ask for the distan
e between two terms s and t, then we return 0
if s is pre
isely t and return c otherwise, for a �xed c. The results from trying

this with an abstra
t time limit of 100 and c varying from 0 to 10 is shown in

Table 3. A few remarks are in order. In every
ase ex
ept 0, at least the 132

problems with one step proofs were solved. The reason for this is that the one

step paramodulant solving the problem is generated as an option at the �rst

step. Sin
e the paramodulant is of the form s = s, the distan
e fun
tion will give

Testing Learning from Equational Proofs 7

the value 0, preferring this option over all other options with distan
e c > 0.

After this option is
hosen, the proof is
omplete (in one abstra
t time step). On

the other hand, if c = 0, there is no reason to prefer the option s = s over the

other options. The only hope would be if the one step option happened to be the

�rst option, and this never happened in pra
ti
e. Hen
e using a
onstant distan
e

fun
tion giving 0 solved no problems. A surprising result is that
onstantly giving

a distan
e of 9 solved just over half the problems. In addition to solving the 132

problems with one step proofs, giving a
onstant distan
e of 9 �nds many two

step proofs. Suppose s = t is a goal with a two step proof. Many paramodulants

are generated at the �rst step and are all estimated to require a 9 step proof.

For ea
h paramodulant
hosen we get a new subgoal s2 = t2 and generate its

paramodulants. If one of these paramodulants is of the form s3 = s3, then the

estimated distan
e will be 0, the option will be
hosen, and the sear
h su

eeds

(�nding the two step proof). If none of the paramodulants is of this form, then

all options will have estimated distan
e 9. Sin
e we are sear
hing for a proof of

at most length 10 and we have already performed one paramodulation, all these

options will be �ltered and the sear
h will ba
ktra
k. In essen
e, the sear
h

pro
eeds by trying ea
h possible paramodulation and then
he
king if one more

paramodulation will
omplete the sear
h.

All other
onstant distan
e fun
tions performed poorly, solving at most a few

more than the problems with one step proofs.

Constant Distan
e Number of Problems

0 0

1 135 (3.9%)

2 135 (3.9%)

3 135 (3.9%)

4 135 (3.9%)

5 135 (3.9%)

6 135 (3.9%)

7 135 (3.9%)

8 138 (4.0%)

9 1739 (50.1%)

10 132 (3.8%)

Table 3. Results using Constant Distan
e

To
ompare the results with established automated theorem provers, the

same 3468 problems were given to Prover9 [3℄, E [4℄ and Waldmeister [1℄. Ea
h

prover was given 60s to solve the problem and default settings were used. E was

run with the �auto-s
hedule option. The results are summarized in Table 4.

For ea
h of the problems with a known one or two step proof (see Table 2), at

least one ATP �nds a proof. For 168 the 803 problems (20.9%) with a known

three step proof (see Table 2), none of the ATPs �nds a proof. It is worth noting

that in some
ases an ATP did not even �nd a proof for some of the 132 problems

8 Chad E. Brown

with a known one step proof. This happened in one
ase for Waldmeister and in

74
ases for Prover9. E solved all 132 of these problems.

ATP Problems Solved (60s)

E 2684 (77.4%)

Waldmeister 2170 (62.6%)

Prover9 2037 (58.7%)

At Least One 3079 (88.8%)

All 3 1384 (39.9%)

Table 4. ATP Results

6 To be
ontinued

Next we should try training a variety of ma
hine learning algorithms on the

distan
e data and try aimleap with advisors based on the learned fun
tions. We

ould also try alternative sear
h pro
edures to aimleap. We
ould also
onsider

extending the dataset and so on.

Referen
es

1. Hillenbrand, T., Jaeger, A., Lö
hner, B.: Waldmeister - Improvements in Perfor-

man
e and Ease of Use. In: Ganzinger, H. (ed.) Pro
eedings of the 16th Interna-

tional Conferen
e on Automated Dedu
tion. pp. 232�236. No. 1632 in Le
ture Notes

in Arti�
ial Intelligen
e, Springer-Verlag (1999)

2. Kinyon, M.K., Vero�, R., Vojt¥
hovský, P.: Loops with abelian inner mapping

groups: An appli
ation of automated dedu
tion. In: Bona
ina, M.P., Sti
kel, M.E.

(eds.) Automated Reasoning and Mathemati
s - Essays in Memory of William W.

M
Cune. Le
ture Notes in Computer S
ien
e, vol. 7788, pp. 151�164. Springer

(2013)

3. M
Cune, W.: Prover9 and ma
e4 (2005�2010),

http://www.
s.unm.edu/~m

une/prover9/

4. S
hulz, S.: System Des
ription: E 1.8. In: M
Millan, K., Middeldorp, A., Voronkov,

A. (eds.) Pro
. of the 19th LPAR, Stellenbos
h. LNCS, vol. 8312. Springer (2013)

	Testing Learning from Equational Proofs
	Terms and Contexts
	Equational Provability
	Proof Search
	The Dataset
	Initial Results
	To be continued

