
Testing Learning from Equational Proofs

Chad E. Brown

Czeh Tehnial University in Prague

Abstrat. Keywords:

We desribe a set of equational theorem proving problems. In every ase the

onjeture is provable from the AIM axioms [2℄. Indeed we have at least one proof

(by a hain of at most 10 equational steps) for eah problem. The purpose of

this set of problems is to evaluate how well di�erent mahine learning tehniques

an learn to approximate how many equational steps are required to omplete

a proof. To this end, we de�ne a set of terms and a basi proof alulus using

only re�exivity and paramodulation.

1

.

1 Terms and Contexts

Let V∀ and V∃ be two disjoint ountably in�nite sets of variables. We all the

variables V∀ universal variables and the variables in V∃ existential variables. We

use x, y, z, w, u, vi to range over universal variables and X,Y, Z,W,U, Vi to range

over existential variables. The set T of terms (where we use s, t to range over

terms) is given by the following grammar:

x|X|e|(s · t)|(s\t)|(s/t)|T (s, t)|L(s, t1, t2)|R(s, t1, t2)|K(s, t)|a(t1, t2, t3).

We write V∀(s) for the �nite set of universal variables that our in s and V∃(s)
for the �nite set of existential variables that our in s

An equation is a pair of terms written as s = t.
When we are trying to prove an equation, the intended interpretation is

∀x · · · ∃X · · · s = t where x · · · lists the universal variables in s and X · · · lists the
existential variables in t.

We will also assume equations intended to be used to prove new equations.

Eah of the assumed equations has no universal variables free, but only existen-

tial variables. An example is the equation (X ·e) = X. Sine assuming equations

is dual to proving equations, the intended interpretation here is ∀X.(X · e) = X.

While this may seem ounterintuitive at �rst, an easy way to justify the ter-

minology is to not that proving ϕ follows from ∀X.(X · e) = X is lassially

equivalent to proving the onjeture

(∃X.(X · e) 6= X) ∨ ϕ.

1

The data should be available from http://grid01.iir.vut.z/~had/aimleapinfo/

http://grid01.ciirc.cvut.cz/~chad/aimleapinfo/

2 Chad E. Brown

In all of the problems in the set we will assume the same 87 equations. 12 of

these equations are loop and AIM axioms [2℄, 5 of these equations are de�niting

equations for T , L, R, K and a, and the other 70 are equations that dedutively

follow from the �rst 17.

In order to desribe paramodulation inferenes, we will need the notion of a

ontext . Informally, a ontext is a �term with a hole.� We use C to range over

ontexts. Contexts are generated by the following grammar:

•|(C · t)|(s · C)|(C\t)|(s\C)|(C/t)|(s/C)|T (C, t)|T (s, C)
|L(C, t1, t2)|L(s, C, t)|L(s, t, C)|R(C, t1, t2)|R(s, C, t)|R(s, t, C)

|K(C, t)|K(s, C)|a(C, t1, t2)|a(t1, C, t2)|a(t1, t2, C)

A ontext C an be ombined with a term t to give a term C[t] in an obvious

way (by reursively traversing C to put t in the hole •).
A substitution θ is a partial funtion sending variables to terms, and θ(t) is

de�ned in the obvious way.

We say θ is a uni�er of s and t if dom(θ) ⊆ V∃ and θ(s) = θ(t). We say s
and t are uni�able if there exists a uni�er of s and t.

An existential renaming of s = t is θ(s) = θ(t) where the domain of θ is

existential variables in s and t, θ(X) ∈ V∃ and θ(X) 6= θ(Y) if X 6= Y if

X,Y ∈ dom(θ).

2 Equational Provability

Let s = t be an equation and s1 = t1 be an equation with no universal variables.

Assume (V∃(s)∪V∃(t))∩ (V∃(s1)∪V∃(t1)) = ∅. We say s2 = t2 is a paramodulant

of s = t using s1 = t1 if one of the following holds:

� There is a ontext C and dom(θ) ⊆ V∃ suh that θ(s) is C[θ(s1)], s2 is

C[θ(t1)] and t2 is t. (Informally, we rewrite from left to right on the left.)

� There is a ontext C and dom(θ) ⊆ V∃ suh that θ(t) is C[θ(s1)], t2 is C[θ(t1)]
and s2 is s. (Informally, we rewrite from left to right on the right.)

� There is a ontext C and dom(θ) ⊆ V∃ suh that θ(s) is C[θ(t1)], s2 is

C[θ(s1)] and t2 is t. (Informally, we rewrite from right to left on the left.)

� There is a ontext C and dom(θ) ⊆ V∃ suh that θ(t) is C[θ(t1)], t2 is C[θ(s1)]
and s2 is s. (Informally, we rewrite from right to left on the right.)

If (V∃(s) ∪ V∃(t)) ∩ (V∃(s1) ∪ V∃(t1)) 6= ∅, then we simply say there are no

paramodulants of s = t using s1 = t1 (by onvention). The idea is that we

only ompute paramodulants after ensuring the sets of existential variables are

disjoint.

Let A be a set of equations with no universal variables. Let s = t be an

equation. A paramodulant of s = t (using A) is any equation s2 = t2 that is a

paramodulant of s = t using s1 = t1 where s1 = t1 is an existential renaming

of an equation in A. Up to renaming of existential variables, there are �nitely

many paramodulants if A is �nite.

We de�ne what it means for an equation to be provable in n steps (from A)

as follows.

Testing Learning from Equational Proofs 3

� If s and t are uni�able, then s = t is provable in 0 steps.

� s = t is provable in n+1 steps if there exists a paramodulant of s = t (using
A) provable in n steps.

It is easy to see that provability is stable under renaming variables so we only

need to onsider one paramodulant up to the hoie of existential variables. This

makes the searh for a proof �nitely branhing.

3 Proof Searh

Let A be a set of equations with no universal variables. In our dataset this A is

a �xed set of 87 equations. Suppose we wish to hek if s = t is provable in n
steps from A. An obvious algorithm is the following:

1. If s and t are uni�able, then report suess.

2. If n = 0, then report failure.

3. Compute a �nite set of paramodulants s2 = t2 from A, obtaining a represen-

tative up to renaming of existential variables for eah possible paramodulant.

4. Order these paramodulants in some way and for eah one ask if s2 = t2 is

provable in n− 1 steps from A.

While the algorithm will terminate in priniple, it often will not in pratie.

Estimates based on the dataset show that there are, on average, roughly 500

possible paramodulants at eah step. Traversing the entire searh spae to hek

if an equation is provable in 10 steps is obviously unrealisti.

If we have an orale that an aurately estimate how many steps are required

to prove s = t, then we an use this to order the paramodulants above. Doing this

would ensure that if s = t is provable in n steps, then the algorithm will never fail

(resulting in baktraking) sine the orale will always hoose a paramodulant

provable in n− 1 (or fewer) steps.

Having a true orale is unrealisti, but if a funtion ould provide a good

estimate of the number of required steps, then the algorithm should require less

baktraking. Our goal is to use di�erent tehniques to learn suh a funtion and

then use the algorithm above to measure how good the estimate given by the

funtion is.

We an fore the algorithm to terminate and get information about how

muh searh was required by having a notion of abstrat time. Informally, the

abstrat time used by a searh for a proof is the number of times a paramodulant

is hosen in the fourth step of the algorithm.

This algorithm is implemented in the aimleap prover. In the implementation

the abstrat time is simply a ounter inremented when a paramodulant is hosen

and the reursive all is made and searh terminates if a given abstrat time limit

is reahed. The funtion for omputing �distane� from s to t (estimating the

number of paramodulation steps required to prove s = t) generally works as

follows:

4 Chad E. Brown

� If s is t, then the distane is 0. (Note: this ould be generalized to give 0 if

s and t are uni�able.)
� Otherwise, if a port to onnet to an advisor was given, then ask the advisor

to estimate the distane.

� If no port to an advisor was given but some other loal funtion was indi-

ated, then use that funtion. (For example, we an give a onstant to always

return as the distane.)

4 The Dataset

We �x A to be a set of 87 equations as mentioned above. 17 of these are AIM

axioms and de�nitions while the remaining are equations that follow from these

AIM equations.

Vero� has obtained a large number of AIM proofs using Prover9 [3℄. Analysing

some of these proofs it was possible to obtain 3468 equations provable from the

equations in A within 2-10 paramodulation steps. In some ases there were mul-

tiple proofs of the same equation, and in most ases it was possible to onsider

the paramodulation proof in at least two ways (always paramodulating into

the left or always paramodulating into the right). As a onsequene there were

7066 proofs, with at least one proof for eah equation. The length (number of

paramodulation steps) in the initial �training� proofs are given in Table 1. (The

number of problems adds up to more than 3468 sine some equations have proofs

of di�erent length and so are ounted twie.)

Length Number of Proofs Number of Problems

2 3284 (46.5%) 1641 (47.3%)

3 1744 (25.7%) 869 (25%)

4 708 (10%) 353 (10.2%)

5 573 (8.1%) 284 (8.2%)

6 332 (4.7%) 166 (4.8%)

7 168 (2.4%) 83 (2.4%)

8 156 (2.2%) 78 (2.2%)

9 58 (0.8%) 29 (0.8%)

10 32 (0.5%) 16 (0.5%)

Table 1. Lengths of Training Proofs

These pure paramodulation proofs were analyzed to give all the intermediate

forms. That is, at eah step there was a new goal equation s = t. The initial goal
never ontains existential variables (i.e., one is always proving ∀x · · · s = t), but
existential variables may be introdued via paramodulation.

Consider the following example from the data set (p9_9a20c522ba):

L(x, e/x, x) = ((x · (e/x))\x)

Testing Learning from Equational Proofs 5

There are two training proofs for this equation, both of whih use the following

two equations from A:

id2: ((Y/X)\Y) = X
prop_da958b3f: L(X\e,X, Y) = ((Y ·X)\Y)

The �rst training proof paramodulates with id2 from right to left on the left

hand side to obtain the intermediate subgoal

L((Y/x)\Y, e/x, x) = ((x · (e/x))\x).

Note that this subgoal has an existential variable Y and should be interpreted

as trying to prove

∀x.∃Y.L((Y/x)\Y, e/x, x) = ((x · (e/x))\x).

The seond step of the �rst proof paramodulates with prop_da958b3f from left

to right on the left hand side of the subgoal (sending the Y from the subgoal to

e in when unifying) to obtain the new subgoal

((x · (e/x))\x) = ((x · (e/x))\x).

Sine the two sides are the same (hene trivially uni�able), we are done.

The seond training proof proeeds in the other diretion and does not in-

trodue existential variables. Starting from the initial goal

L(x, e/x, x) = ((x · (e/x))\x)

we paramodulate with prop_da958b3f from right to left on the right hand side

to obtain the subgoal

L(x, e/x, x) = L((e/x)\e, e/x, x).

We then paramodulate with id2 from left to right on the right hand side to

obtain the subgoal

L(x, e/x, x) = L(x, e/x, x).

Sine the two sides are the same, we are done.

From these two training proofs, we know there are one step proofs of

L((Y/x)\Y, e/x, x) = ((x · (e/x))\x)

and

L(x, e/x, x) = L((e/x)\e, e/x, x).

We also know there is a two step proof of the initial goal

L(x, e/x, x) = ((x · (e/x))\x).

By replaying the 7066 proofs of the 3468 equations we obtain data about

whih top level and intermediate equations are provable in n steps. This data

ould be used to train a mahine learning algorithm to learn to estimate the

number of steps required to prove the equation.

6 Chad E. Brown

5 Initial Results

We have run aimleap and other ATPs on the 3468 problems and we summarize

the results here. aimleap always searhed for a proof of length at most 10 (i.e.,

the depth of the searh tree was always bounded at 10) and was always given

an abstrat time limit of 100.

As a sanity test, an �orale� advisor was used �rst. This advisor returns the

known distane for goals and subgoals that were seen in the training proofs.

For other equations it returned a high distane of 50 (essentially foring these

equations to be pruned from the paramodulant options). We all this the �rote

learning� advisor.

As expeted, the prover ould reprove all 3468 problems given the full rote

learned information. Furthermore, no baktraking was required and so the max-

imum abstrat time was 10. In some ases, shorter proofs than the training proofs

were found. In 132 ases, new proofs involving only one paramodulation step were

found. Table 2 lists the number of equations proven within n steps using this

orale advisor.

Length Number of Problems

1 132 (3.8%)

2 1912 (55.1%)

3 803 (23.2%)

4 314 (9.1%)

5 147 (4.2%)

6 74 (2.1%)

7 29 (0.8%)

8 29 (0.8%)

9 17 (0.5%)

10 11 (0.3%)

Table 2. Lengths of Proofs using Orale

To do a ross-validation test, the training data was split into 10 parts. For

eah part we reate a �le of distane data to be given to the advisor. For eah

problem we ran aimleap with an advisor using the rote learned distane data

from the other 9 parts. We gave an abstrat time limit of 100. 800 (21.9%)

problems were proven in the ross-validation test.

The next test we tried was to simply give a onstant distane. To be more

preise, if we ask for the distane between two terms s and t, then we return 0
if s is preisely t and return c otherwise, for a �xed c. The results from trying

this with an abstrat time limit of 100 and c varying from 0 to 10 is shown in

Table 3. A few remarks are in order. In every ase exept 0, at least the 132

problems with one step proofs were solved. The reason for this is that the one

step paramodulant solving the problem is generated as an option at the �rst

step. Sine the paramodulant is of the form s = s, the distane funtion will give

Testing Learning from Equational Proofs 7

the value 0, preferring this option over all other options with distane c > 0.

After this option is hosen, the proof is omplete (in one abstrat time step). On

the other hand, if c = 0, there is no reason to prefer the option s = s over the

other options. The only hope would be if the one step option happened to be the

�rst option, and this never happened in pratie. Hene using a onstant distane

funtion giving 0 solved no problems. A surprising result is that onstantly giving

a distane of 9 solved just over half the problems. In addition to solving the 132

problems with one step proofs, giving a onstant distane of 9 �nds many two

step proofs. Suppose s = t is a goal with a two step proof. Many paramodulants

are generated at the �rst step and are all estimated to require a 9 step proof.

For eah paramodulant hosen we get a new subgoal s2 = t2 and generate its

paramodulants. If one of these paramodulants is of the form s3 = s3, then the

estimated distane will be 0, the option will be hosen, and the searh sueeds

(�nding the two step proof). If none of the paramodulants is of this form, then

all options will have estimated distane 9. Sine we are searhing for a proof of

at most length 10 and we have already performed one paramodulation, all these

options will be �ltered and the searh will baktrak. In essene, the searh

proeeds by trying eah possible paramodulation and then heking if one more

paramodulation will omplete the searh.

All other onstant distane funtions performed poorly, solving at most a few

more than the problems with one step proofs.

Constant Distane Number of Problems

0 0

1 135 (3.9%)

2 135 (3.9%)

3 135 (3.9%)

4 135 (3.9%)

5 135 (3.9%)

6 135 (3.9%)

7 135 (3.9%)

8 138 (4.0%)

9 1739 (50.1%)

10 132 (3.8%)

Table 3. Results using Constant Distane

To ompare the results with established automated theorem provers, the

same 3468 problems were given to Prover9 [3℄, E [4℄ and Waldmeister [1℄. Eah

prover was given 60s to solve the problem and default settings were used. E was

run with the �auto-shedule option. The results are summarized in Table 4.

For eah of the problems with a known one or two step proof (see Table 2), at

least one ATP �nds a proof. For 168 the 803 problems (20.9%) with a known

three step proof (see Table 2), none of the ATPs �nds a proof. It is worth noting

that in some ases an ATP did not even �nd a proof for some of the 132 problems

8 Chad E. Brown

with a known one step proof. This happened in one ase for Waldmeister and in

74 ases for Prover9. E solved all 132 of these problems.

ATP Problems Solved (60s)

E 2684 (77.4%)

Waldmeister 2170 (62.6%)

Prover9 2037 (58.7%)

At Least One 3079 (88.8%)

All 3 1384 (39.9%)

Table 4. ATP Results

6 To be ontinued

Next we should try training a variety of mahine learning algorithms on the

distane data and try aimleap with advisors based on the learned funtions. We

ould also try alternative searh proedures to aimleap. We ould also onsider

extending the dataset and so on.

Referenes

1. Hillenbrand, T., Jaeger, A., Löhner, B.: Waldmeister - Improvements in Perfor-

mane and Ease of Use. In: Ganzinger, H. (ed.) Proeedings of the 16th Interna-

tional Conferene on Automated Dedution. pp. 232�236. No. 1632 in Leture Notes

in Arti�ial Intelligene, Springer-Verlag (1999)

2. Kinyon, M.K., Vero�, R., Vojt¥hovský, P.: Loops with abelian inner mapping

groups: An appliation of automated dedution. In: Bonaina, M.P., Stikel, M.E.

(eds.) Automated Reasoning and Mathematis - Essays in Memory of William W.

MCune. Leture Notes in Computer Siene, vol. 7788, pp. 151�164. Springer

(2013)

3. MCune, W.: Prover9 and mae4 (2005�2010),

http://www.s.unm.edu/~mune/prover9/

4. Shulz, S.: System Desription: E 1.8. In: MMillan, K., Middeldorp, A., Voronkov,

A. (eds.) Pro. of the 19th LPAR, Stellenbosh. LNCS, vol. 8312. Springer (2013)

	Testing Learning from Equational Proofs
	Terms and Contexts
	Equational Provability
	Proof Search
	The Dataset
	Initial Results
	To be continued

