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Introduction

I Example: x + y = y + x

I Higher-Order Logic

I Types, Terms, Proofs

I Interactive and Automated Theorem Provers

I Set Theory

I Surreal Numbers: x + y = y + x revisited
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Example: Commutativity of Addition

I ∀xy .x + y = y + x

I where x and y range over natural numbers

I i.e.: ω = {0, 1, 2, . . .}

I Assume we know:

I ∀x .x + 0 = x

I ∀xy .x + (S y) = S(x + y)

I Here S is the successor function: S x is x + 1.

I Commutativity proven by induction, with two subclaims
proven by induction:

I ∀y .0 + y = y

I ∀xy .(S x) + y = S(x + y)
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Stating Induction

I Commutativity: ∀xy .x + y = y + x

I How to state induction as a formula?

∀p.p 0 → (∀y .p y → p (S y)) → ∀y .p y

I Here “p” ranges over predicates on natural numbers.

I p has a different type than x and y .

I First-order logic allows ∀x and ∀y .

I We need to go beyond first-order logic to a logic that
allows ∀p.
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Applying Induction

∀p.p 0 → (∀y .p y → p (S y)) → ∀y .p y

I For a fixed x let p y mean x + y = y + x .

I For this p induction specializes to

x + 0 = 0 + x
→ (∀y .x + y = y + x → x + (S y) = (S y) + x)

→ (∀y .x + y = y + x)

I Soon we will write the p as

λy .x + y = y + x

I The other two subclaims will apply induction with
different, but similar, values for p.
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Higher-Order Logic

Alonzo Church

Peter B. Andrews

I Church created the simply typed λ-calculus version of
higher-order logic in 1940.

I Andrews pioneered research in automated theorem
proving in higher-order logic for many decades. (TPS)
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Simple Types

I ι (individuals)

I o (propositions/booleans/truth values)

I α→ β (function types)
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Frames: Interpreting Simple Types

Intended interpretation of simple types:

I Dι : some nonempty set (e.g., the natural numbers or a
universe of sets)

I Do : two truth values {0, 1}

I Dα→β : some set of functions f : Dα → Dβ

I Plus some closure conditions.
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Frames: Interpreting Simple Types

Example:

I Dι = {0, 1, 2, . . . , }
I Do = {0, 1}
I Dα→β = (Dβ)Dα

I The successor function is in Dι→ι.

I Curried binary + function is in Dι→ι→ι

(+ 1) is in Dι→ι and (+ 1) 2 = 3 ∈ Dι
I The characteristic function ξ of the set of even numbers

is in Dι→o .

ξ(n) = 1 iff n is even

I Essentially, members of Dι→o are sets of natural
numbers.
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Simply Typed λ-Terms

I Typed Variables x

I Typed Constants c

I Applications s t

I Abstractions λx .s (or λx : α.s)

I Implications s → t

I Universal quantifiers ∀x .s (or ∀x : α.s)
I Obvious typing conditions:

I s t has type β if s has type α→ β and t has type α.
I λx .s has type α→ β if x has type α and s has type β.
I s → t and ∀x .s have type o if s and t have type o.

I Propositions are terms of type o.

I Closed terms are those with no free variables.
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Interpreting Terms

I ϕ : assignment mapping variables x (of type α) into Dα
I I is defined so that for every assignment ϕ and every

term s of type α,

Iϕ(s) ∈ Dα.

I Iϕ(x) = ϕ(x)

I I(c) ∈ Dα (user’s choice for constants c of type α)

I Iϕ(s t) is Iϕ(s) applied to Iϕ(t)

I Iϕ(λx .s) is the function f ∈ Dα→β such that
f (a) = Iϕx

a
(s).

I Iϕ(s → t) = 1 iff Iϕ(s) = 0 or Iϕ(t) = 1.

I Iϕ(∀x .s) = 1 iff Iϕx
a
(s) = 1 for all a ∈ Dα.

Frame D + interpretation function I
= “Henkin interpretation”
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Validity

A proposition s (term of type o) is valid if
Iϕ(s) = 1

for every Henkin interpretation (D, I) and assignment ϕ.

Examples of valid propositions:

I ∀p : o.p → p

I ∀q : o.(∀p : o.p)→ q.

Notation:

I ⊥ := ∀p : o.p

I > := ∀p : o.p → p

The valid propositions above: > and ∀q : o.⊥ → q.
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Induction

I Assume ι corresponds to natural numbers
(Dι = {0, 1, 2, . . .}).

I Let O be a constant of type ι, with I O = 0.

I Let S be a constant of type ι→ ι, with I S being the
function mapping x to x + 1, so I S x = x + 1.

I We can now write induction:

∀p : ι→ o.p O → (∀y : ι.p y → p (S y)) → ∀y : ι.p y
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Equivalence of Terms

conversion:

I α: s and t are the same up to renamings of bound
variables without causing collisions.

I β: (λx .s)t reduces to sxt .

I η: λx .sx reduces to s if x is not free in s.

I s ≈ t means s and t are αβη-convertible.

I Note: Given a Henkin interpretation (D, I),

s ≈ t implies Iϕ(s) = Iϕ(t).
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Equality

I Let s and t be terms of type α.

I There are various ways to define a proposition s = t so
that the proposition really means s and t are equal.

I One is attributed to Leibniz:

λxy .∀q : α→ o.q x → q y

I Here is a variant:

λxy .∀q : α→ α→ o.q x y → q y x

I They are semantically equivalent.
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Commutativity of Addition

I Assume ι corresponds to natural numbers
(Dι = {0, 1, 2, . . .}).

I Let O be a constant of type ι, with I O = 0.

I Let S be a constant of type ι→ ι, with I S x = x + 1.

I Let A be a constant of type ι→ ι→ ι, with
I A x y = x + y .

I “x + 0 = x :” ∀x .A x O = x

I “x + Sy = S(x + y):” ∀xy .A x (S y) = S (A x y)

I “x + y = y + x :” ∀xy .A x y = A y x
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Other Logical Operators

I We can define ¬s to mean s → ⊥. It is easy to check
that in any Henkin interpretation Iϕ(¬s) = 1 iff
Iϕ(s) = 0.

I There are also ways to define ∧, ∨, ↔ and ∃
(Russell-Prawitz style definitions).

I s ∨ t is ∀p : o.(s → p) → (t → p) → p

I Note the similarity of s ∨ t to induction:

∀p : ι→ o.p O → (∀y : ι.p y → p (S y)) → ∀y : ι.p y

I A special case of induction gives every natural is O or
S y (for some y).
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Higher Order Proofs
Let A be a set of closed propositions (axioms).
Natural Deduction Rules (Γ finite set of propositions):

Γ ` s
s ∈ Γ

Γ ` s
s ∈ A

Γ ` s

Γ ` t
s ≈ t

Γ, s `A t

Γ ` s → t

Γ `A s → t Γ ` s

Γ ` t

Γ ` s

Γ ` ∀x .s
x fresh

Γ ` ∀x : α.s

Γ ` sxt
t : α

Γ, s `A ¬¬s
Γ ` s

Γ, s `A t Γ, t `A s

Γ ` s = t
s, t : o

Γ ` s x = t x

Γ ` s = t
s, t : α→ β, x : α fresh
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Commutativity of Addition
I Assume A includes these:

I Induction:

∀p : ι→ o.p O → (∀y : ι.p y → p (S y)) → ∀y : ι.p y

I “x + 0 = x :” ∀x .A x O = x
I “x + Sy = S(x + y):” ∀xy .A x (S y) = S (A x y)

I Using the ∀-elimination rule with induction and
λy .A O y = y gives:

` (λy .A O y = y) O
→ (∀x : ι.(λy .A O y = y) x → (λy .A O y = y) (S x))
→ ∀x : ι.(λy .A O y = y) x .

I By β conversion we obtain

` A O O = O
→ (∀x : ι.A O x = x → A O (S x) = (S x))
→ ∀x : ι.A O x = x .
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Soundness and Completeness

I Let A be a set of closed propositions (axioms).

I A Henkin model of A is a Henkin interpretation (D, I)
such that I(s) = 1 for every s ∈ A.

I A proposition s is A-valid if Iϕ(s) = 1 in every Henkin
model of A.

I This proof system is “sound”: if ` s, then s is A-valid.

I This proof system is “complete”: if s is A-valid, then
` s.
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Alternative Proof Systems

I Natural deduction is good for interactive theorem
proving.

I Other calculi are good for automated theorem proving.

I Sequent Calculi

I Tableau

I Resolution

I Superposition
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Automated Theorem Proving

I There are many ATPs based on Church’s type theory:

I Leo-III

I Zipperposition

I TPS

I Satallax

I Lash

I Two top FO provers have been extended to search in
Church’s type theory:

I E

I Vampire
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Interactive Theorem Proving

I There are many ITPs based on extensions of Church’s
type theory:

I HOL-light

I HOL4

I Isabelle-HOL

I etc.

I The extensions include type variables and type
definitions.

I These extensions make automated theorem proving
much harder.

I My own ITP, Megalodon, does not include these
extensions.



Formalization of
Mathematics in
Higher Order Set

Theory

Brown

Introduction

Example

Higher Order Logic

Set Theory

Surreal Numbers

Conclusion

Satallax
About 10 years ago I worked on a higher-order theorem
prover Satallax. It won the TH0 division of CASC for most
years of the 2010s.

I Complete tableau calculus (in the Hintikka, Beth,
Smullyan, Fitting sense) for higher-order logic with a
choice operator.

I Instantiation based – used no unification in the basic
calculus.

I Had interesting restriction on quantifiers at base types:
only instantiate with discriminating terms.

I Able to reason with equations without rewriting deeply
inside terms.

I People still think I work on this, though I haven’t in
years.

I The developer who took over from me about 5 years
ago also is no longer working on it.
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Satallax

∀x .f x = x

p (f (f a))

¬p a

f (f a) 6= a

f a = a

f (f a) 6= f a a 6= a
f a 6= a



Formalization of
Mathematics in
Higher Order Set

Theory

Brown

Introduction

Example

Higher Order Logic

Set Theory

Surreal Numbers

Conclusion

Satallax

∀x .f x = x

p (f (f a))

¬p a

f (f a) 6= a

f a = a

f (f a) 6= f a a 6= a
f a 6= a



Formalization of
Mathematics in
Higher Order Set

Theory

Brown

Introduction

Example

Higher Order Logic

Set Theory

Surreal Numbers

Conclusion

Satallax

∀x .f x = x

p (f (f a))

¬p a

f (f a) 6= a

f a = a

f (f a) 6= f a a 6= a
f a 6= a



Formalization of
Mathematics in
Higher Order Set

Theory

Brown

Introduction

Example

Higher Order Logic

Set Theory

Surreal Numbers

Conclusion

Satallax

∀x .f x = x

p (f (f a))

¬p a

f (f a) 6= a

f a = a

f (f a) 6= f a a 6= a
f a 6= a



Formalization of
Mathematics in
Higher Order Set

Theory

Brown

Introduction

Example

Higher Order Logic

Set Theory

Surreal Numbers

Conclusion

Lash

I Lash is a new implementation of Satallax’s calculus.

I Cezary Kaliszyk reimplemented terms/βη-normalization
in C

I ...with perfect sharing.

I He also reimplemented important data structures like
priority queues in C.

I “Better” than Satallax already (but not in CASC 2022),
but it’s still early days.
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Set Theory

Georg Cantor

Ernst Zermelo

No one shall expel us from the paradise that Cantor has
created. - David Hilbert
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Set Theory

I Popular foundation for mathematics

I Natural choice for formalizers of mathematics

I The Mizar people knew this in the 1970s already.

I ZFC (and TG) are not finitely axiomatizable in
first-order

I ...but higher-order versions are!
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Constructors for HO Set Theory

I ι is now used as the type of sets.

I ∅ is a constant of type ι.

I
⋃

is a constant of type ι→ ι (
⋃

X is the union of X ).

I ℘ is a constant of type ι→ ι (℘ X is power set of X ).

I R is a constant of type ι→ (ι→ ι)→ ι.

I R X (λx .t) corresponds to the set {t|x ∈ X}.

I Fraenkel “replacement” operator.

I plus two other constants for choice and universes.
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Axioms for HO Set Theory

I Set extensionality: X ⊆ Y → Y ⊆ X → X = Y

I Foundation (an ∈-induction principle)

I An axiom for each constant, e.g.:
I y ∈ {t|x ∈ X} ↔ ∃x ∈ X .y = t

I That is:

∀X : ι.∀F : ι→ ι.∀y : ι.y ∈ R X F ↔ ∃x .x ∈ X∧y = F x .
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Natural Numbers in HO Set Theory

I ∅ as 0.

I ordsucc X = X ∪ {X} as successor.

I natp : ι→ o as the least predicate with 0 and closed
under successor:

λn.∀p : ι→ o.p ∅ → (∀x .p x → p (ordsucc x)) → p n.

I Induction principle is now provable:

∀p : ι→ o. p ∅
→ (∀x .natp x → p x → p (ordsucc x))
→ ∀x .natp x → p x .

I Also, addition is definable, relevant identities are
provable, and commutativity is provable again as before.

I Using a universe U, we can define a set ω as
{x ∈ U|natp x}.
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Ordinals in HO Set Theory

I Natural numbers are the finite ordinals.

I ω is the first infinite ordinal.

I Let TransSet be a constant of type ι→ o.

I Defining equation:

∀x : ι.TransSet x ↔ ∀y ∈ x .y ⊆ x

I Let ordinal be a constant of type ι→ o.

I Defining equation:

∀x : ι.ordinal x ↔ TransSet x ∧ ∀y ∈ x .TransSet y
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Ordinals in HO Set Theory

I The following ordinal induction principle is provable:

∀p : ι→ o.
(∀x .ordinal x → (∀y ∈ x .p y) → p x)

→ (∀x .ordinal x → p x)
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Surreal Numbers
I Example formalization: Conway’s Surreal Numbers.
I John Conway. On Numbers and Games. 1976.
I If L is a set of surreal numbers and R is a set of surreal

numbers and x < y for every x ∈ L and y ∈ R, then
there is a “first” surreal z such that L < z < R
(pointwise).
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Surreal Numbers

I I formalized Surreals in HO set theory in Megalodon.

I 850 theorems starting from axioms of set theory up
through the complex number field.

I The first 315 (37%) are before starting surreals (set
theory infrastructure).

I Commutativity of addition on the surreals is the 556’th
theorem.



Formalization of
Mathematics in
Higher Order Set

Theory

Brown

Introduction

Example

Higher Order Logic

Set Theory

Surreal Numbers

Conclusion

Surreal Addition

I Let x and y be surreal numbers.

I Let L and R be such that x is the first number between
L and R.

I Let L′ and R ′ be such that y is the first number
between L′ and R ′.

I x + y is the first surreal number between

{w + y |w ∈ L} ∪ {x + w |w ∈ L′}

and
{z + y |z ∈ R} ∪ {x + z |z ∈ R ′}

I ∀xy surreal.x + y = y + x

I Proof by a double induction principle on surreals.
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Surreal Addition

I Let SNo : ι→ o be a predicate true for surreals.

I Let ||x || be the ordinal at which x is born.

I Let Sα be the set of surreals born before ordinal α.

I The double induction principle:

∀p : ι→ ι→ o.
(∀xy . SNo x → SNo y

→ (∀w ∈ S||x ||.p w y)
→ (∀z ∈ S||y ||.p x z)
→ (∀w ∈ S||x ||.∀w ∈ S||y ||.p w z)
→ p x y)

→ ∀xy .SNo x → SNo y → p x y .
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Conclusion

I Mathematics can be formalized in Church’s type theory
with axioms for set theory.

I This approach does not require additions to Church’s
type theory (e.g., type variables and type definitions).

I The approach keeps the interactive theorem proving
formulation close to the automated theorem proving
formulation.
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