
A Proof of Cantor-Bernstein-Schröder
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We present a proof of Cantor-Bernstein-Schröder based on Knaster’s argu-
ment in [1]. The proof is given at a level of detail sufficient to prepare the reader
to consider corresponding formal proofs in interactive theorem provers.

Definition 1. Let Φ : ℘(A) → ℘(B). We say Φ is monotone if Φ(U) ⊆ Φ(V )
forall U, V ∈ ℘(A) such that U ⊆ V . We say Φ is antimonotone if Φ(V ) ⊆ Φ(U)
forall U, V ∈ ℘(A) such that U ⊆ V .

Definition 2. For sets A and B we write A \B for {u ∈ A|u /∈ B}.

Lemma 3. Let A be a set and Φ : ℘(A) → ℘(A) be given by Φ(X) = A \ X.

Then Φ is antimonotone.

Proof. Left to reader.

Definition 4. Let f : A → B be a function from a set A to a set B. For

X ∈ ℘(A) we write f(X) for {f(x)|x ∈ X}.

Lemma 5. Let f : A → B be a function from a set A to a set B. Let Φ :
℘(A) → ℘(B) be given by Φ(X) = f(X). Then Φ is monotone.

Proof. Left to reader.

Theorem 6 (Knaster-Tarski Fixed Point). Let Φ : ℘(A) → ℘(A). Assume Φ
is monotone. Then there is some Y ∈ ℘(A) such that Φ(Y ) = Y .

Proof. Let Y be {u ∈ A|∀X ∈ ℘(A).Φ(X) ⊆ X → u ∈ X}. The following is
easy to see:

Y ⊆ X for all X ∈ ℘(A) such that Φ(X) ⊆ X. (1)

We prove Φ(Y ) ⊆ Y and Y ⊆ Φ(Y ).
We first prove Φ(Y ) ⊆ Y . Let u ∈ Φ(Y ). We must prove u ∈ Y . Let

X ∈ ℘(A) such that Φ(X) ⊆ X be given. By (1) Y ⊆ X. Hence Φ(Y ) ⊆ Φ(X)
by monotonicity of Φ. Since u ∈ Φ(Y ), we have u ∈ Φ(X). Since Φ(X) ⊆ X,
we conclude u ∈ X.

We next turn to Y ⊆ Φ(Y ). Since Φ(Y ) ⊆ Y , we know Φ(Φ(Y )) ⊆ Φ(Y ) by
monotonicity of Φ. Hence Y ⊆ Φ(Y ) by (1).
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Definition 7. Let f : A → B be a function. We say f is injective if ∀xy ∈
A.f(x) = f(y) → x = y.

Definition 8. We say sets A and B are equipotent if there exists a relation R
such that

1. ∀x ∈ A.∃y ∈ B.(x, y) ∈ R

2. ∀y ∈ B.∃x ∈ A.(x, y) ∈ R

3. ∀x ∈ A.∀y ∈ B.∀z ∈ A.∀w ∈ B.(x, y) ∈ R ∧ (z, w) ∈ R → (x = z ⇐⇒
y = w)

Theorem 9 (Cantor-Bernstein-Schröder). If f : A → B and g : B → A are

injective, then A and B are equipotent.

Proof. Let f : A → B and g : B → A be given injective functions. Let
Φ : ℘(A) → ℘(A) be defined by Φ(X) = g(B \ f(A \X)). It is easy to see that
Φ is monotone by Lemmas 3 and 5. By Theorem 6 there is some C ∈ ℘(A) such
that Φ(C) = C. Hence C ⊆ A and

∀x.x ∈ C ⇐⇒ x ∈ g(B \ f(A \ C)). (2)

We can visualize the given information as follows:
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Let R = {(x, y) ∈ A × B|x /∈ C ∧ y = f(x) ∨ x ∈ C ∧ x = g(y)}. We must
prove the three conditions in Definition 8.

1. Let x ∈ A be given. We must find some y ∈ B such that (x, y) ∈ R. We
consider cases based on whether x ∈ C or x /∈ C. If x /∈ C, then we can
take y to be f(x). Assume x ∈ C. By (2) we know x ∈ g(B \ f(A \ C)).
Hence there is some y ∈ B \ f(A \ C) such that x = g(y) and we can use
this y as the witness.

2. Let y ∈ B be given. We must find some x ∈ A such that (x, y) ∈ R. We
consider cases based on whether or not y ∈ f(A \ C). If y ∈ f(A \ C),
then there is some x ∈ A\C such that f(x) = y and we can use this same
x as the witness. Assume y /∈ f(A \ C). Note that g(y) ∈ C using 2 and
y ∈ B \ f(A \ C). Hence we can take g(y) as the witness.
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3. Before proving the third property, we prove the following claim:

∀x ∈ A.∀y ∈ B.x ∈ C ∧ x = g(y) → y /∈ f(A \ C) (3)

Let x ∈ A and y ∈ B be given. Assume x ∈ C, x = g(y) and y ∈ f(A\C).
Since x ∈ C,there is some w ∈ B \ f(A \ C) such that g(w) = x by (2).
Since g is injective, w = y contradicting y ∈ f(A \ C).

Now that we know (3) we can easily prove the third property by splitting
into four cases. Let x ∈ A, y ∈ B, z ∈ A and w ∈ B be given. Assume
(x, y) ∈ R and (z, w) ∈ R. By the definition of R there are two cases for
(x, y) ∈ R and two cases for (z, w) ∈ R. In each case we need to prove
x = z ⇐⇒ y = w.

• Assume x /∈ C, y = f(x), z /∈ C and w = f(z). The fact that
x = z ⇐⇒ y = w follows easily from injectivity of f .

• Assume x /∈ C, y = f(x), z ∈ C and z = g(w). In order to prove
x = z ⇐⇒ y = w we argue that x 6= z and y 6= w. Clearly x 6= z
since x /∈ C and z ∈ C. By (3) we know w /∈ f(A \C). On the other
hand y ∈ f(A \ C) since y = f(x) and x ∈ A \ C. Hence y 6= w.

• Assume x ∈ C, x = g(y), z /∈ C and w = f(z). Again in order to
prove x = z ⇐⇒ y = w we argue that x 6= z and y 6= w. Clearly
x 6= z since x ∈ C and z /∈ C. By (3) we know y /∈ f(A \ C). On
the other hand w ∈ f(A \ C) since w = f(z) and z ∈ A \ C. Hence
y 6= w.

• Assume x ∈ C, x = g(y), z ∈ C and z = g(w). The fact that
x = z ⇐⇒ y = w follows easily from injectivity of g.

Corollary 10. If f : A → B is injective and B ⊆ A, then A and B are

equipotent.

Proof. This follows immediately from Theorem 9 using the injection from B
into A, since this injection is obviously injective.
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