Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (181 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (8 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (31 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (8 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (75 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (6 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (47 entries)

Global Index

B

bar [library]
bool_hset [lemma, in hlemmas]


C

C [inductive, in withlpo]
C [inductive, in exercise]
cantor [definition, in ninfty]
CB [lemma, in withpem]
CB [section, in withpem]
CB [lemma, in withlpo]
CB [section, in withlpo]
CB [lemma, in exercise]
CB [section, in exercise]
CB.A [variable, in withlpo]
CB.A [variable, in exercise]
CB.B [variable, in withlpo]
CB.B [variable, in exercise]
CB.CB [section, in withpem]
CB.CB.A [variable, in withpem]
CB.CB.Aset [variable, in withpem]
CB.CB.B [variable, in withpem]
CB.CB.Bset [variable, in withpem]
CB.CB.f [variable, in withpem]
CB.CB.f_inj [variable, in withpem]
CB.CB.g [variable, in withpem]
CB.CB.g_inj [variable, in withpem]
CB.dec_range_g [variable, in withlpo]
CB.dec_range_f [variable, in withlpo]
CB.EM [variable, in exercise]
CB.f [variable, in withlpo]
CB.f [variable, in exercise]
CB.f_inj [variable, in withlpo]
CB.f_inj [variable, in exercise]
CB.g [variable, in withlpo]
CB.g [variable, in exercise]
CB.g_inj [variable, in withlpo]
CB.g_inj [variable, in exercise]
CB.lpo [variable, in withlpo]
CB.PEM [variable, in withpem]
ø [notation, in withlpo]
cond [definition, in bar]
crucial [lemma, in topem]
curry [definition, in prelude]
C_FCω [lemma, in withlpo]
C_i [constructor, in withlpo]
C_i [constructor, in exercise]


D

decidable [definition, in prelude]
decrange [lemma, in withpem]
decreasing [definition, in ninfty]
dec_C [lemma, in withlpo]
dec_FC_n [lemma, in withlpo]
dec_FC [lemma, in withlpo]
dense [lemma, in ninfty]


E

EMA_nat_hset [lemma, in bar]
exercise [library]
explicit_CB [lemma, in exercise]


F

f [definition, in bar]
falseright [lemma, in ninfty]
FC [inductive, in withlpo]
FC_i [constructor, in withlpo]
FCω_C [lemma, in withlpo]
firstzeronat [lemma, in ninfty]
forall_hset [lemma, in hlemmas]
forall_hprop [lemma, in hlemmas]
frompluseqleft [definition, in hlemmas]
frompluseqright [definition, in hlemmas]
f_inv_f_eq [lemma, in withlpo]
f_f_inv_eq [lemma, in withlpo]
f_inv [definition, in withlpo]
f_inv_f_eq [lemma, in exercise]
f_f_inv_eq [lemma, in exercise]
f_inv [definition, in exercise]


G

g [definition, in bar]
g_inv_g_eq [lemma, in withlpo]
g_g_inv_eq [lemma, in withlpo]
g_inv [definition, in withlpo]
g_inv_g_eq [lemma, in exercise]
g_g_inv_eq [lemma, in exercise]
g_inv [definition, in exercise]


H

hedberg [lemma, in hlemmas]
hlemmas [library]
hprop [definition, in prelude]
hpropEM [section, in bar]
hpropEM_hprop [lemma, in hlemmas]
hpropEM.A [variable, in bar]
hpropEM.Aprop [variable, in bar]
hpropEM.explicit_hset_CB [variable, in bar]
hprop_hset [lemma, in prelude]
hprop_implies_hset [lemma, in hlemmas]
hset [definition, in prelude]


I

injective [definition, in prelude]
injective_g [lemma, in bar]
injective_f [lemma, in bar]
injective_succ_infty [lemma, in ninfty]
inverse [definition, in prelude]
inverse_r_r_inv [lemma, in withlpo]
inverse_r_r_inv [lemma, in exercise]
iso [definition, in bar]
isomorphism [definition, in prelude]
isomorphism_r [lemma, in withlpo]
isomorphism_r [lemma, in exercise]
iter [definition, in prelude]


J

J [definition, in prelude]
J [definition, in hlemmas]


L

lpo [definition, in prelude]
lpo_true [lemma, in withpem]
lpo_iff_lpo_min [lemma, in prelude]
lpo_min [definition, in prelude]


M

minimizationdec [lemma, in ninfty]
more_explicit_CB [lemma, in withlpo]


N

nat_hset [lemma, in hlemmas]
neg_hprop [lemma, in hlemmas]
ninfty [library]
noconf_infty [lemma, in ninfty]
notnatω [lemma, in ninfty]
N_infty_omniscient [lemma, in ninfty]
N_infty_of_nat_eq [lemma, in ninfty]
N_infty_eq [lemma, in ninfty]
N_infty_of_nat [definition, in ninfty]
N_infty_hset [lemma, in ninfty]
N_infty [definition, in ninfty]


O

omniscient [definition, in prelude]


P

PEM [lemma, in topem]
PEM [section, in topem]
PEM.A [variable, in topem]
PEM.Aprop [variable, in topem]
PEM.hset_CB [variable, in topem]
plus_hprop [lemma, in hlemmas]
plus_hset [lemma, in hlemmas]
pred_succ_eq [lemma, in ninfty]
pred_infty [lemma, in ninfty]
prelude [library]
prod_hprop [lemma, in hlemmas]


R

r [definition, in withlpo]
r [definition, in bar]
r [definition, in exercise]
range [definition, in prelude]
range_hprop [lemma, in hlemmas]
rinv_r [lemma, in withlpo]
rinv_r [lemma, in exercise]
rtuple [definition, in bar]
r_rinv [lemma, in withlpo]
r_inv [definition, in withlpo]
r_inv [definition, in bar]
r_rinv [lemma, in exercise]
r_inv [definition, in exercise]


S

section_retraction [definition, in prelude]
Sigma_hset [lemma, in hlemmas]
Sigma_hprop [lemma, in hlemmas]
Sigma_eq_equiv [lemma, in hlemmas]
Sigma_eq_uncurried_inv [lemma, in hlemmas]
Sigma_eq_inv2 [definition, in hlemmas]
Sigma_eq_inv1 [definition, in hlemmas]
Sigma_eq_uncurried [lemma, in hlemmas]
Sigma_eq [lemma, in hlemmas]
succ_infty [definition, in ninfty]


T

tofrompluseqleft [lemma, in hlemmas]
tofrompluseqright [lemma, in hlemmas]
topem [library]
topluseqleft [definition, in hlemmas]
topluseqright [definition, in hlemmas]
trueleft [lemma, in ninfty]


U

uncurry [definition, in prelude]


W

withlpo [library]
withpem [library]


Z

zeronat [lemma, in ninfty]
zero_infty [definition, in ninfty]


other

_ × _ (type_scope) [notation, in prelude]
Σ _ .. _ , _ (type_scope) [notation, in prelude]
ℕ∞ [notation, in ninfty]
¬ _ [notation, in prelude]
ø [notation, in prelude]
π₁ [notation, in prelude]
π₂ [notation, in prelude]
ε_N_infty_spec [lemma, in ninfty]
ε_N_infty_nat_min [lemma, in ninfty]
ε_N_infty_nat1_prod [lemma, in ninfty]
ε_N_infty_zero_true [lemma, in ninfty]
ε_N_infty [definition, in ninfty]
ε_N_infty1_decr [lemma, in ninfty]
ε_N_infty1 [definition, in ninfty]
τ [definition, in hlemmas]
ω [definition, in ninfty]



Notation Index

C

ø [in withlpo]


other

_ × _ (type_scope) [in prelude]
Σ _ .. _ , _ (type_scope) [in prelude]
ℕ∞ [in ninfty]
¬ _ [in prelude]
ø [in prelude]
π₁ [in prelude]
π₂ [in prelude]



Variable Index

C

CB.A [in withlpo]
CB.A [in exercise]
CB.B [in withlpo]
CB.B [in exercise]
CB.CB.A [in withpem]
CB.CB.Aset [in withpem]
CB.CB.B [in withpem]
CB.CB.Bset [in withpem]
CB.CB.f [in withpem]
CB.CB.f_inj [in withpem]
CB.CB.g [in withpem]
CB.CB.g_inj [in withpem]
CB.dec_range_g [in withlpo]
CB.dec_range_f [in withlpo]
CB.EM [in exercise]
CB.f [in withlpo]
CB.f [in exercise]
CB.f_inj [in withlpo]
CB.f_inj [in exercise]
CB.g [in withlpo]
CB.g [in exercise]
CB.g_inj [in withlpo]
CB.g_inj [in exercise]
CB.lpo [in withlpo]
CB.PEM [in withpem]


H

hpropEM.A [in bar]
hpropEM.Aprop [in bar]
hpropEM.explicit_hset_CB [in bar]


P

PEM.A [in topem]
PEM.Aprop [in topem]
PEM.hset_CB [in topem]



Library Index

B

bar


E

exercise


H

hlemmas


N

ninfty


P

prelude


T

topem


W

withlpo
withpem



Lemma Index

B

bool_hset [in hlemmas]


C

CB [in withpem]
CB [in withlpo]
CB [in exercise]
crucial [in topem]
C_FCω [in withlpo]


D

decrange [in withpem]
dec_C [in withlpo]
dec_FC_n [in withlpo]
dec_FC [in withlpo]
dense [in ninfty]


E

EMA_nat_hset [in bar]
explicit_CB [in exercise]


F

falseright [in ninfty]
FCω_C [in withlpo]
firstzeronat [in ninfty]
forall_hset [in hlemmas]
forall_hprop [in hlemmas]
f_inv_f_eq [in withlpo]
f_f_inv_eq [in withlpo]
f_inv_f_eq [in exercise]
f_f_inv_eq [in exercise]


G

g_inv_g_eq [in withlpo]
g_g_inv_eq [in withlpo]
g_inv_g_eq [in exercise]
g_g_inv_eq [in exercise]


H

hedberg [in hlemmas]
hpropEM_hprop [in hlemmas]
hprop_hset [in prelude]
hprop_implies_hset [in hlemmas]


I

injective_g [in bar]
injective_f [in bar]
injective_succ_infty [in ninfty]
inverse_r_r_inv [in withlpo]
inverse_r_r_inv [in exercise]
isomorphism_r [in withlpo]
isomorphism_r [in exercise]


L

lpo_true [in withpem]
lpo_iff_lpo_min [in prelude]


M

minimizationdec [in ninfty]
more_explicit_CB [in withlpo]


N

nat_hset [in hlemmas]
neg_hprop [in hlemmas]
noconf_infty [in ninfty]
notnatω [in ninfty]
N_infty_omniscient [in ninfty]
N_infty_of_nat_eq [in ninfty]
N_infty_eq [in ninfty]
N_infty_hset [in ninfty]


P

PEM [in topem]
plus_hprop [in hlemmas]
plus_hset [in hlemmas]
pred_succ_eq [in ninfty]
pred_infty [in ninfty]
prod_hprop [in hlemmas]


R

range_hprop [in hlemmas]
rinv_r [in withlpo]
rinv_r [in exercise]
r_rinv [in withlpo]
r_rinv [in exercise]


S

Sigma_hset [in hlemmas]
Sigma_hprop [in hlemmas]
Sigma_eq_equiv [in hlemmas]
Sigma_eq_uncurried_inv [in hlemmas]
Sigma_eq_uncurried [in hlemmas]
Sigma_eq [in hlemmas]


T

tofrompluseqleft [in hlemmas]
tofrompluseqright [in hlemmas]
trueleft [in ninfty]


Z

zeronat [in ninfty]


other

ε_N_infty_spec [in ninfty]
ε_N_infty_nat_min [in ninfty]
ε_N_infty_nat1_prod [in ninfty]
ε_N_infty_zero_true [in ninfty]
ε_N_infty1_decr [in ninfty]



Constructor Index

C

C_i [in withlpo]
C_i [in exercise]


F

FC_i [in withlpo]



Inductive Index

C

C [in withlpo]
C [in exercise]


F

FC [in withlpo]



Section Index

C

CB [in withpem]
CB [in withlpo]
CB [in exercise]
CB.CB [in withpem]


H

hpropEM [in bar]


P

PEM [in topem]



Definition Index

C

cantor [in ninfty]
cond [in bar]
curry [in prelude]


D

decidable [in prelude]
decreasing [in ninfty]


F

f [in bar]
frompluseqleft [in hlemmas]
frompluseqright [in hlemmas]
f_inv [in withlpo]
f_inv [in exercise]


G

g [in bar]
g_inv [in withlpo]
g_inv [in exercise]


H

hprop [in prelude]
hset [in prelude]


I

injective [in prelude]
inverse [in prelude]
iso [in bar]
isomorphism [in prelude]
iter [in prelude]


J

J [in prelude]
J [in hlemmas]


L

lpo [in prelude]
lpo_min [in prelude]


N

N_infty_of_nat [in ninfty]
N_infty [in ninfty]


O

omniscient [in prelude]


R

r [in withlpo]
r [in bar]
r [in exercise]
range [in prelude]
rtuple [in bar]
r_inv [in withlpo]
r_inv [in bar]
r_inv [in exercise]


S

section_retraction [in prelude]
Sigma_eq_inv2 [in hlemmas]
Sigma_eq_inv1 [in hlemmas]
succ_infty [in ninfty]


T

topluseqleft [in hlemmas]
topluseqright [in hlemmas]


U

uncurry [in prelude]


Z

zero_infty [in ninfty]


other

ε_N_infty [in ninfty]
ε_N_infty1 [in ninfty]
τ [in hlemmas]
ω [in ninfty]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (181 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (8 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (31 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (8 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (75 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (6 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (47 entries)

This page has been generated by coqdoc