
Discriminating Discriminator from iProver-Eq

Chad E. Brown

April 26, 2020

1 Introduction

We consider Example 1 from a paper about iProver-Eq [4], showing five Dis-

criminator proof searches and arguing that none of these proof searches are
similar to that performed by iProver-Eq.

2 The Example

We begin by discussing Example 1 from [4]. The example consists of four first-
order clauses that form an unsatisfiable set:

f(f(u)) = f(u) (1)

g(f(fx))(fy) = hz ∨ g(fx)y 6= hc (2)

g(fa)(fb) 6= hw (3)

g(fa)b = hc (4)

Note that u, w, x, y and z are variables implicitly universally quantified over
the clauses in which they appear.

Let us quickly consider why this set is unsatisfiable. Clauses (2) and (4)
together easily yield g(f(fa))(fb) = hz (for arbitrary z). Simplifying with
Clause (1) we have g(fa)(fb) = hz. If z and w are chosen to be the same term,
then we have a conflict with Clause (3).

Neither iProver-Eq nor Discriminator follow this proof precisely, though
the instantiations a and b are always present. The way iProver-Eq and Dis-

criminator arrive at these instantiations are very different, as we we will see.
In addition, Discriminator has no way of “simplifying” (or rewriting) f(fa)
to fa using Clause (1) in the equation g(f(fa))(fb) = hz. The reason is that
the occurrence of f(fa) in g(f(fa))(fb) = hz is considered “too deep” for the
rules used by Discriminator.

The iProver-Eq proof described in [4] proceeds as follows. First iProver-Eq
instantiates all variables to a default element ⊥. The resulting ground clauses
are clearly satisfiable and the following satisfiable set of ground literals is se-
lected:

1

• f(f⊥) = f⊥

• g(f(f⊥))(f⊥) = h⊥

• g(fa)(fb) 6= h⊥

• g(fa)b = hc

iProver-Eq then considers the first-order unit clauses (consisting only of the se-
lected literals). Effectively Clause (2) is temporarily replaced with the following
unit clause:

g(f(fx))(fy) = hz (5)

The four unit clauses are shown to be unsatisfiable via a US (unit-superposition)
calculus. The unit equation given by Clause (1) is used to rewrite f(fx) to
fx in Clause (5) yielding g(fx)(fy) = hz. Performing this inference required
unification of f(fx) in Clause (5) and f(fu) in Clause (1). Unifying gives the
substituion u 7→ x. This inferred unit equation is used to rewrite g(fa)(fb) to hz
in Clause (3) yielding hz 6= hw. Again, the inference used unification on terms
g(fa)(fb) and g(fx)(fy) yielding the substitution x 7→ a, y 7→ b. (This is how
iProver-Eq first considers the instantiations a and b.) Finally a contradiction
can be inferred from hz 6= hw by unifying hz and hw to obtain w 7→ z.

After proving this special case is unsatisfiable, iProver-Eq examines the in-
stantiations used in each clause and adds new ground clauses based on these
instantiations. In particular the following four ground clauses are now part of
the set of ground clauses:

• f(fa) = fa

• g(f(fa))(fb) = h⊥ ∨ g(fa)b 6= hc

• g(fa)(fb) 6= h⊥

• g(fa)b = hc

These are unsatisfiable, as pointed out in [4]. However, it is worth noting that
they are propositionally satisfiable. The unsatisfiability relies on the semantics
of equality to determine that f(fa) = fa, g(f(fa))(fb) = h⊥ and g(fa)(fb) 6=
h⊥ cannot all be true. This is decidable, of course, and can be determined using
congruence closure.

The iProver-Eq proof above makes use of unification to instantiate free vari-
ables in clauses. Discriminator does not use unification and only works on
closed formulas, so it must proceed differently. In order to compare different
Discriminator proofs to the iProver-Eq proof above, let us list all ground in-
stantiations and closed formulas considered during the iProver-Eq proof. We
make implicit quantifications explicit so that all formulas are closed. The only
ground instantiations appearing in the proof are ⊥, a and b. The closed for-
mulas are listed in Table 1. We omit the closed formulas corresponding to the
original clauses, since these will be shared by every proof. This leaves us with
10 propositions.

2

f(f⊥) = f⊥
g(f(f⊥))(f⊥) = h⊥ ∨ g(f⊥)⊥ 6= hc

g(f(f⊥))(f⊥) = h⊥
g(fa)(fb) 6= h⊥

∀xyz.g(f(fx))(fy) = hz

∀xyz.g(fx)(fy) = hz

∀zw.hz 6= hw

f(fa) = fa

g(f(fa))(fb) = h⊥ ∨ g(fa)b 6= hc

g(fa)(fb) 6= h⊥

Table 1: Propositions considered in iProver-Eq Proof

3 Proof Search 1

The first Discriminator proof we consider was found using the default settings
within 20s. Since Discriminator insists on closed formulas, the clauses are
given with explicit quantifiers:

∀u.f(f(u)) = f(u) (6)

∀xyz.g(f(fx))(fy) = hz ∨ g(fx)y 6= hc (7)

∀w.g(fa)(fb) 6= hw (8)

g(fa)b = hc (9)

The proof makes use of two shallow rules (described below) and, interestingly,
makes use of not just instantiations a and b, but also c, hc, fb and h(fb). All
but the last of these instantiations are subterms of the original formulas, and
are indeed also subterms of Proposition (9). The last instantiation h(fb) is
produced as a discriminating term [2] during the proof search.

When Discriminator initially asserts the four propositions above, it also
analyzes what shallow rules can be produced. Three shallow rules are produced
from Proposition (6) and one shallow rule is produced from Proposition (8).

Only one of the shallow rules from Proposition (6) is used in the proof. It
has the following form:

x, y|fx = fy ⇐ x = fy (10)

The reader should verify that Proposition (6) implies ∀xy.x = fy → fx =
fy. The way the rule is used in practice is if a proposition of the form fs 6=
ft is processed, then the proposition s 6= ft will be produced along with a
propositional clause relating these propositions in an obvious way. Note that
determining the substitution x 7→ s, y 7→ t to apply the rule does not require
unification or even general matching since the variables x and y both have
shallow occurrences in fx = fy. (By contrast, x has no shallow occurence in
g(f(fx))(fy) = hz ∨ g(fx)y 6= hc which is why Proposition (7) did not produce
a shallow rule.)

The shallow rule produced by Proposition (8) has the following form:

x, y, z|gxy 6= hz ⇐ x = fa, y = fb (11)

3

11 ∀yz.(((g(f(fa))(fy)) = (hz)) ∨ (g(fa)y) 6= (hc))

12 ∀yz.(((g(f(f(hc)))(fy)) = (hz)) ∨ (g(f(hc))y) 6= (hc))

14 ∀z.(((g(f(f(hc)))(fb)) = (hz)) ∨ (g(f(hc))b) 6= (hc))

124 ((fa) = (fa))

125 (b = (fb))

139 (((g(f(f(hc)))(fb)) = (h(hc))) ∨ (g(f(hc))b) 6= (hc))

141 ((g(f(f(hc)))(fb)) = (h(hc)))

142 ((fb) = (fb))

169 ∀z.(((g(f(fa))(fb)) = (hz)) ∨ (g(fa)b) 6= (hc))

173 ∀z.(((g(f(fa))(fc)) = (hz)) ∨ (g(fa)c) 6= (hc))

175 ∀z.(((g(f(fa))(f(hc))) = (hz)) ∨ (g(fa)(hc)) 6= (hc))

183 (((g(f(fa))(f(hc))) = (h(hc))) ∨ (g(fa)(hc)) 6= (hc))

185 ((g(f(fa))(f(hc))) = (h(hc)))

186 ((f(fa)) = (fa))

215 (((g(f(fa))(fc)) = (h(fb))) ∨ (g(fa)c) 6= (hc))

223 ((g(f(fa))(fc)) = (h(fb)))

237 (b = (h(fb)))

1707 (((g(f(fa))(fb)) = (h(h(fb)))) ∨ (g(fa)b) 6= (hc))

2298 ((g(f(fa))(fb)) = (h(h(fb))))

Table 2: Propositions in Proof Search 1

The four propositions are assigned numbers and these numbers are sent
to MiniSat as unit clauses. Proposition (6) is assigned 4 , Proposition (7) is

assigned 3 , Proposition (8) is assigned 2 and Proposition (9) is assigned 1 .
Propositions (6) and (8) are not processed during the search and only appear
in relation to their corresponding shallow rules.

The remaining propositions and clauses are generated during the search.
Table 2 lists these propositions along with their assigned number used to com-
municate with MiniSat.

Let us now consider the steps Discriminator took leading to a successful
proof. These steps are shown in Figure 1. A total of 2401 steps were taken
before the proof was found, but most of these did not contribute to the proof.

The first steps that contribute to the proof (Steps 0-3 and Step 6) process
subterms of the initial asserted propositions as instantiations. Step 0 processes
hc, Step 1 processes a, Step 2 processes c, Step 3 processes fb and Step 6 pro-
cesses b. The result of processing these instantiations is to make them available
to use as instantiations when processing a universal quantifier. Note that Dis-

criminator has already obtained the instantiations a and b simply by including
all subterms of the problem, rather than as a result of any unification. (This
will be true for all the Discriminator proofs we consider until the last one.)

Step 8 processes Proposition (7) instantiating it with all instantiations pro-
cessed so far. Two instances, corresponding to instantiating x with a and hc

will play a role in the successful proof search. In the case of the instance with a

the corresponding MiniSat clause will also play a role in the final propositional

4

unsatisfiable. This clause records that if Proposition (7) is true, then so is the
instance with a for x.

Step 9 processes the instance of Proposition (7) with hc, i.e.,

∀yz.(((g(f(f(hc)))(fy)) = (hz)) ∨ (g(f(hc))y) 6= (hc)).

Here y is instantiated with all the instantiations so far. The one that will play
a role later is the instance with y 7→ b. We return to process this instance in
Step 114.

Step 100 processes Proposition (9) using Shallow Rule (11) producing propo-
sitions fa 6= fa and b 6= fb. The proposition fa 6= fa is processed in Step 101
yielding a unit clause for MiniSat indicating fa = fa is true. Propositions of
the form s 6= s are typically eagerly processed to record that s = s is true.

In Step 114 we return to process the proposition

∀z.(((g(f(f(hc)))(fb)) = (hz)) ∨ (g(f(hc))b) 6= (hc)).

As a universally quantified formula we instantiate with all the instantiations so
far. The one that will be built upon is the instance with z 7→ hc. This instance
is processed in Step 115 producing two propositions (from the two disjuncts),
only one of which will contribute to the successful part of the proof search,
the equation g(f(f(hc)))(fb) = h(hc). In Step 116 we process this equation
applying Shallow Rule (11) to produce fb 6= fb. This is then eagerly processed
in Step 117 so that we now know fb = fb.

The reader may already observe that some steps Discriminator takes only
“contribute to the proof” by giving roundabout ways to consider a proposition
of the form s 6= s for a particular s and then determine s = s is true.

Step 149 returns to the instance of Proposition (7) using x 7→ a (the more
reasonable instance). Three instances of this contribute to the proof, one di-
rectly (with y 7→ b), and two indirectly (with y 7→ c and y 7→ hc). A MiniSat
clause recording the relationship between the proposition and its instance with
y 7→ b will contribute to proposition unsatisfiability. Unfortunately Discrimi-

nator does not process this instance until Step 253. It first processes the other
two instances. Step 150 processes the instance with y 7→ hc, instantiating it
with z 7→ hc. The resulting disjunction is processed in Step 151 producing the
equation g(f(fa))(f(hc)) = h(hc). Shallow Rule (11) applied to this equation
in Step 152 produces the disequation f(fa) 6= fa. Note that the disquation
f(fa) 6= fa is relevant to the proof, even though it was arrived at in a round-
about way. Indeed Discriminator ultimately processes f(fa) 6= fa in the last
step of the proof, Step 2400, yielding propositional unsatisfiability.

Step 184 processes the instance using y 7→ c from Step 149. Here the instance
z 7→ fb is produced and then processed in Step 191. Processing this disjunction
produces the equation g(f(fa))(fc) = h(fb) which is processed in Step 192.
Processing this equation makes it available to be used later. In particular it will
be used to confront a disequation in the next step we describe, Step 200.

Step 200 processes the disequation b 6= fb produced in Step 100. The equa-
tion g(f(fa))(fc) = h(fb) confronts this disequation producing the disequation
b 6= h(fb). (Readers unfamiliar with the confrontation rule can consult [3, 2, 1].)

5

0: (hc)

1: a

2: c

3: (fb)

6: b

8: 3 11 -3 | 11

12

9: 12 14

100: 1 Shallow Rule (11) -124 -125

101: -124 124

114: 14 139

115: 139 141

116: 141 Shallow Rule (11) -142

117: -142 142

149: 11 169 -11 | 169

173 175

150: 175 183

151: 183 185

152: 185 Shallow Rule (11) -186

184: 173 215

191: 215 223

192: 223

200: -125 Confrontation -237

253: 169

800: -237

802: (h(fb)) 1707 -169 | 1707

955: 1707 2298 -1707 | 2298 | -1

1928: 2298 Shallow Rule (11) -2298 | -142 | -186 | -2

2400: -186 Shallow Rule (10) 186 | -124 | -4

Figure 1: Search Steps Leading to Proof 1

6

Step 253 finally processes the instance of Proposition (8) with x 7→ a and
y 7→ b produced in Step 149. The proposition being processed is

∀z.(((g(f(fa))(fb)) = (hz)) ∨ (g(fa)b) 6= (hc)).

Discriminator instantiates this with all instantiations processed so far, but
none of these end up being used as part of the ultimate proof (though any of
them could have been, in principle). Instead the quantified formula is kept to
be instantiated with later instantiations.

Step 800 processes the disequation b 6= h(fb). A side effect of processing the
disequation is to note h(fb) is now a discriminating term (occurs on one side of
a disequation) and can be potentially used for instantiations. Step 802 processes
h(fb) as an instantiation with the effect of instantiating every previously pro-
cessed universally quantified formula with this new instantiation. In particular
the proposition processed in Step 253 is instantiated with h(fb) yielding the
disjunction

g(f(fa))(fb) = h(h(fb)) ∨ g(fa)b 6= hc

and a MiniSat clause relating the quantified proposition to the instance. Step
955 processes the disjunction. This could have produced two propositions
g(f(fa))(fb) = h(h(fb)) and g(fa)b 6= hc, but g(fa)b 6= hc is not new (see
Proposition (9) and Step 100). The proposition g(f(fa))(fb) = h(h(fb)) is
new and is produced along with a MiniSat clause relating the disjunction to
its disjuncts. If we read the MiniSat clauses along with the initial four unit
clauses, at this point we effectively know the equation g(f(fa))(fb) = h(h(fb))
must be true. Step 1928 processes g(f(fa))(fb) = h(h(fb)) applying Shallow
Rule (11) to produce a clause that says g(f(fa))(fb) = h(h(fb)) is false if
f(fa) = fa and fb = fb. We already know fb = fb from Step 117. Since we
know g(f(fa))(fb) = h(h(fb)), we must have f(fa) 6= fa. This will conflict
with the final step.

In the final step, Step 2400, the disequation f(fa) 6= fa (produced in Step
152) is processed. Shallow Rule (10) is triggered yielding a clause that says
f(fa) = fa is true if fa = fa is true. We know fa = fa from Step 100 and so
f(fa) = fa must be true. This conflicts with Step 1928. Technically MiniSat
has noted propositional unsatisfiability of the clauses produced by Discrimi-

nator.
Let us briefly consider how similar or different the proof search performed

by Discriminator is from that of iProver-Eq in this instance. Discriminator

made use of six instantiations a, b, c, hc, fb and h(fb) and iProver-Eq made use
of three instantiations ⊥, a and b. These do have a and b in common, as one
would expect, but are clearly different sets. As for the propositions used in the
(successful part) of the proof searches, comparing the 10 propositions in Table 1
to the 19 propostions in Table 2 we no common propositions. The closest match
is that iProver-Eq made use of the equation f(fa) = fa and Discriminator

made use of the disequation f(fa) 6= fa.

7

5 ((fa) = (fa))

43 ∀yz.(((g(f(fb))(fy)) = (hz)) ∨ (g(fb)y) 6= (hc))

44 ∀z.(((g(f(fb))(fb)) = (hz)) ∨ (g(fb)b) 6= (hc))

66 (((g(f(fb))(fb)) = (hb)) ∨ (g(fb)b) 6= (hc))

70 ((g(f(fb))(fb)) = (hb))

72 ((fb) = (fb))

264 ∀yz.(((g(f(fa))(fy)) = (hz)) ∨ (g(fa)y) 6= (hc))

290 ∀z.(((g(f(fa))(fb)) = (hz)) ∨ (g(fa)b) 6= (hc))

297 (((g(f(fa))(fb)) = (hc)) ∨ (g(fa)b) 6= (hc))

334 ((g(f(fa))(fb)) = (hc))

339 ((f(fa)) = (fa))

Table 3: Propositions in Proof Search 2

4 Proof Search 2

The first proof was quite roundabout and took almost 20s to search for this
proof. This was simply a consequence of the order in which propositions and in-
stantiations were processed by default. A priority salt parameter can optionally
be given to Discriminator in order to reorder the search by pseudorandomly
modifying the priority of options in the priority queue. By simply setting the
priority salt to 2, Discriminator can find a proof within 1s. We consider this
second proof in this section. It produces and uses the same shallow rules as
the previous proof. As in the previous proof, the initial four propositions are
assigned numbers 4 , 3 , 2 and 1 and these are given as unit clauses to Min-
iSat. The remaining propositions generated during the search (and contributing
to the ultimate success) are listed in Table 3. The main search only requires 123
steps (as opposed to 2401 steps for the first proof) before the clauses given to
MiniSat become unsatisfiable. The relevant steps of the proof search are given
in Figure 2.

Step 0 processes Proposition (9) triggering Shallow Rule (11) to produce
fa 6= fa which is processed in Step 1 to produce a clause recording that fa = fa

is true.
Step 2 processes the instantiation c (available as a subterm of one of the

four propositions) making it available for later instantiations. Step 3 processes
Proposition (7) making it available to be instantiated. Step 27 processes the
instantiation b instantiating it into Proposition (7) to give the proposition

∀yz.g(f(fb))(fy) = hz ∨ g(fb)y 6= hc.

Step 28 processes this new proposition instantiating it with b as well giving

∀z.g(f(fb))(fb) = hz ∨ g(fb)b 6= hc.

Step 51 processes this new proposition instantiating it with b giving

g(f(fb))(fb) = hb ∨ g(fb)b 6= hc.

8

0: 1 Shallow Rule (11) -5 5

1: -5

2: c

3: 3

27: b 43

28: 43 44

51: 44 66

52: 66 70

54: 70 Shallow Rule (11) -72

55: -72 72

100: a 264 -3 | 264

107: 264 290 -264 | 290

108: 290 297 -290 | 297

120: 297 334 -297 | 334 | -1

121: 334 Shallow Rule (11) -339 -334 | -72 | -339 | -2

122: -339 Shallow Rule (10) 339 | -5 | -4

Figure 2: Search Steps Leading to Proof 2

Step 52 processes this disjunction producing the disjunct g(f(fb))(fb) = hb.
Step 54 processes g(f(fb))(fb) = hb triggering Shallow Rule (11) to produce
the disequation fb 6= fb which is processed in Step 55 yielding a clause recording
the truth of fb = fb.

Step 100 processes the instantiation a instantiating into Proposition (7) giv-
ing

∀yz.g(f(fa))(fy) = hz ∨ g(fa)y 6= hc

along with a clause implying this proposition is true. Step 107 processes this
proposition instantiating it with b giving

∀z.g(f(fa))(fb) = hz ∨ g(fa)b 6= hc

along with a clause implying this new proposition is true. The new proposition
is processed in Step 108 and is instantiated with c giving

g(f(fa))(fb) = hc ∨ g(fa)b 6= hc

along with a clause indicating this disjunction is true. The disjunction is pro-
cessed in Step 120 giving the new proposition g(f(fa))(fb) = hc and a clause re-
lating the disjunction to its disjuncts. Since we know the disjunction as true and
the right disjunct is the negation of Proposition (9) we know g(f(fa))(fb) = hc

must be true. Step 121 processes g(f(fa))(fb) = hc triggering Shallow Rule
(11) to produce the disequation f(fa) 6= fa and a clause implying f(fa) 6= fa

must be true (since g(f(fa))(fb) = hc is known from Step 120 and fb = fb is

9

known from Step 55). The final step, Step 122, processes f(fa) 6= fa triggering
Shallow Rule (10) to produce a clause implying f(fa) = fa must be true (since
fa = fa is known from Step 1). This conflict completes the proof.

This second Discriminator proof is more straightforward than the first.
The only instantiations used are a, b and c, which is closer to the three (⊥,
a and b) used in the iProver-Eq proof. Among the 13 propositions in Table 3
there are again none in common with Table 1, with the closest match being
f(fa) = fa vs. f(fa) 6= fa. It is worth noting that even this this formula,
iProver-Eq obtained f(fa) = fa as an instance of Clause (1) used to rewrite a
subterm of (essentially) Clause (2). On the contrary, Discriminator obtained
f(fa) 6= fa as a result of applying a shallow rule derived from Proposition (8)
– which corresponds to Clause (3), not Clause (2). A shallow rule derived from
Proposition (6) is used at the end of both of these first two Discriminator

proofs simply to obtain a conflict with f(fa) 6= fa and not to positively derive
or use f(fa) = fa.

5 Proof Search 3

The third proof was found by Discriminator in less than a second with param-
eters set that limited the shallow rules produced to functional ones. Functional
shallow rules are of the form

x1, . . . , xn|s t ⇐ φ1, . . . , φm

where each of the variables x1, . . . , xn has a unique shallow occurrence in s.
The shallow rule is triggered when processing a disequation of the form t1 6= t2
where either t1 or t2 has the form θs for some θ. As before, this θ can be
easily computed without general matching due to the shallow occurrences of
the variables in s. Suppose t1 has the form θs. In this case the shallow rule
produces the disequation θt 6= t2, propositions θφ1, . . . , θφm and a MiniSat
clause indicating that if all of θφ1, . . . , θφm are true and t1 6= t2 is true, then
θt 6= t2 is true. If t2 has the form θs, then the disequation θt 6= t1 plays the role
of θt 6= t2 in the description of the previous case.

The priority salt for the search was set to 1.
Two functional shallow rules produced and used. The first is produced from

Proposition (6) and has the form:

x|fx f(fx) (12)

This rule is triggered when processing a disequation fs 6= t or t 6= fs. The rule
produces f(fs) 6= t and a MiniSat clause relating the new disequation to the
one being processed.

The second shallow rule is not produced by one of the initial four propo-
sitions, but by a proposition processed during the search. In particular, after
instantiating Proposition (7) with x 7→ a and y 7→ b, we have the proposition

∀z.g(f(fa))(fb) = hz ∨ g(fa)b 6= hc.

10

7 ∀yz.(((g(f(fa))(fy)) = (hz)) ∨ (g(fa)y) 6= (hc))

9 ∀z.(((g(f(fa))(fb)) = (hz)) ∨ (g(fa)b) 6= (hc))

22 ((g(fa)(fb)) = (ha))

25 ((g(f(fa))(fb)) = (g(fa)(fb)))

26 ((f(fa)) = (fa))

27 ((fb) = (fb))

31 ((f(fa)) = (f(fa)))

Table 4: Propositions in Proof Search 3

1: b

2: 3

3: a 7 -3 | 7

4: 7 9 -7 | 9

7: 9 Shallow Rule (13)

8: 2 -22 -2 | -22

9: -22 Shallow Rule (13) -25 22 | -1 | -25 | -9

10: -25 Decomposition -26 -27 25 | -27 | -26

11: -27 27

12: -26 Shallow Rule (12) -31 26 | -31 | -4

13: -31 31

Figure 3: Search Steps Leading to Proof 3

This can be read as an implication that if g(fa)b = hc, then hz = g(f(fa)) for
every z. This z has a shallow occurrence in hz, justifying the creation of the
following shallow rule:

z|hz g(f(fa))(fb) ⇐ g(fa)b = hc (13)

The propositions, other than the initial four, produced during the search are
given in Table 4. This search uses the least number of extra propositions,
namely, 7. The only instantiations used are a and b. This is arguably the most
straightforward of the five Discriminator proofs we consider. The steps are
shown in Figure 3.

Step 1 processes b (again, available as a subterm of the original propositions).
Step 2 processes Proposition (7). Step 3 processes a instantiating it into Propo-
sition (7) giving the instance and a clause recording its truth. Step 4 processes
this instance instantiating it with b giving the instance and a clause recording
its truth. This instance is processed in Step 7 producing Shallow Rule (13)
described above.

Step 8 processes Proposition (8) instantiating it with a to obtain the disequa-
tion g(fa)(fb) 6= ha along with a clause indicating the disequation is true. Step

11

9 processes the disequation triggering Shallow Rule (13) to produce the disequa-
tion g(f(fa))(fb) 6= g(fa)(fb) and a clause implying g(f(fa))(fb) 6= g(fa)(fb)
must be true (since the side condition of Shallow Rule (13) is Proposition (9)).
The disequation g(f(fa))(fb) 6= g(fa)(fb) is processed in Step 10 and de-
composed into f(fa) 6= fa and fb 6= fb with a clause indicating that since
g(f(fa))(fb) 6= g(fa)(fb) is true one of f(fa) 6= fa or fb 6= fb must be true.
Step 11 processes fb 6= fb determining fb = fb is true. Hence we must have
f(fa) 6= fa. Step 12 processes f(fa) 6= fa triggering Shallow Rule (12) to
produce f(fa) 6= f(fa) and a clause indicating f(fa) 6= f(fa) must be true.
Step 13 processes f(fa) 6= f(fa) to determine f(fa) = f(fa) is true, a conflict
that completes the proof.

In this case no extra instantiation terms are used, and so the set {a, b}
if instantiations is very close to the set {⊥, a, b} used by iProver-Eq. It is
still, however, the case that these instantiations were arrived at by including all
ground subterms as initial instantiations and not through a process of unification
during the search. There is again no overlap with the formulas in Tables 1 and 4
with the closest matches being f(fa) = fa vs. f(fa) 6= fa. Note that in this
case the conflict with f(fa) 6= fa was not obtained by either instantiating
Proposition (6) or by using Proposition (6) to reduce f(fa) to fa and using
fa = fa. Instead a shallow rule produced from Proposition (6) is used to expand
f(fa) 6= fa to be f(fa) 6= f(fa) which is in conflict with f(fa) = f(fa). The
propositions fa = fa and fa 6= fa are never considered in this proof.

6 Proof Search 4

The remaining two searches are longer as they do not make use of shallow rules.
We do not describe them in the same level of detail as the previous three proofs,
relying on the reader to fill in the details from the given tables and figures.

The fourth proof was found automatically by Discriminator within a sec-
ond with parameters set so that no shallow rules would be produced or used.
The priority salt was set to 44. The most notable difference between this proof
and the others is the use of congruence closure in the final step.

The instantiations used in this proof will be a, b and g(fa)a. While a and
b are subterms of the original problem, g(fa)a is produced as a discriminating
term during the search. The propositions produced during the search are shown
in Table 5. The steps of the proof are shown in Figure 4.

Step 0 processes b as a potential instantiation. Steps 1 and 2 process Propo-
sitions (7) and (6). Step 3 processes a. In summary these steps produce
f(fb) = fb, f(fa) = fa and

∀yz.g(f(fa))(fy) = hz ∨ g(fa)y 6= hc

with corresponding information given to MiniSat. Steps 4, 6 and 11 instantiates

∀yz.g(f(fa))(fy) = hz ∨ g(fa)y 6= hc

12

6 ((f(fb)) = (fb))

7 ((f(fa)) = (fa))

8 ∀yz.(((g(f(fa))(fy)) = (hz)) ∨ (g(fa)y) 6= (hc))

9 ∀z.(((g(f(fa))(fa)) = (hz)) ∨ (g(fa)a) 6= (hc))

10 ∀z.(((g(f(fa))(fb)) = (hz)) ∨ (g(fa)b) 6= (hc))

11 (((g(f(fa))(fb)) = (ha)) ∨ (g(fa)b) 6= (hc))

12 (((g(f(fa))(fb)) = (hb)) ∨ (g(fa)b) 6= (hc))

13 ((g(f(fa))(fb)) = (ha))

14 ((g(f(fa))(fb)) = (hb))

16 (((g(f(fa))(fa)) = (hb)) ∨ (g(fa)a) 6= (hc))

17 ((g(fa)a) = (hc))

32 (((g(f(fa))(fb)) = (h(g(fa)a))) ∨ (g(fa)b) 6= (hc))

34 ((f(f(g(fa)a))) = (f(g(fa)a)))

82 ((g(f(fa))(fb)) = (h(g(fa)a)))

120 ((g(fa)(fb)) = (hb))

Table 5: Propositions in Proof Search 4

further with y 7→ a, z 7→ b, y 7→ b, z 7→ a and y 7→ b, z 7→ b. The result
disjunctions are processed in Steps 7, 8 and 12. In particular, Step 12 processes
g(f(fa))(fa) = hb∨g(fa)a 6= hc to produce the disequation g(fa)a 6= hc which,
after being processed in Step 14, makes g(fa)a a discriminating term, processed
as an instantiation in Step 15. Step 15 instantiates

∀z.g(f(fa))(fb) = hz ∨ g(fa)b 6= hc

and Proposition (6) with g(fa)a giving

g(f(fa))(fb) = h(g(fa)a) ∨ g(fa)b 6= hc

and
f(f(g(fa)a)) = f(g(fa)a).

Processing
g(f(fa))(fb) = h(g(fa)a) ∨ g(fa)b 6= hc

produces the equation g(f(fa))(fb) = h(g(fa)a).
Step 75 processes Proposition (8) instantiating it with b to give the disequa-

tion g(fa)(fb) 6= hb.
Unless instructed otherwise, when Discriminator processes equations and

disequations, it uses the MiniSat clauses so far to determine which equations
must be true and adds these to a graph for testing congruence closure [5] and
tests the sides of disequations processed for congruence. If the two sides must
be equal, a clause is produced for MiniSat recording that the equations known
so far imply the disequation is false. This is what happens in the final step,
Step 78, in Figure 4. In particular, congruence closure determines that the
disequation g(fa)(fb) 6= hb is in conflict with the following (ground) equations:

13

0: b

1: 3

2: 4 6 -4 | 6

3: a 7 -4 | 7

8 -3 | 8

4: 8 9 10 -8 | 10

5: 7

6: 10 11 -10 | 11

12 -10 | 12

7: 11 13 -11 | 13 | -1

8: 12 14 -12 | 14 | -1

9: 14

10: 13

11: 9 16

12: 16 -17

14: -17

15: (g(fa)a) 32 -10 | 32

34 -4 | 34

40: 34

48: 32 82 -32 | 82 | -1

49: 82

52: 6

75: 2 -120 -2 | -120

76: 1

78: -120 Cong Clos 120 | -1 | -6 | -82 | -34 | -13 | -14 | -7

Figure 4: Search Steps Leading to Proof 4

14

• f(fa) = fa

• g(f(fa))(fb) = hb

• g(f(fa))(fb) = ha

• f(f(g(fa)a)) = f(g(fa)a)

• g(f(fa))(fb) = hb

• g(f(fa))(fb) = h(g(fa)a)

• f(fb) = fb

• g(fa)b = hc

Clearly only the first two of these equations are necessary to determine g(fa)(fb)
must equal hb, but this level of precision is not maintained. With more precision,
most of the steps of this proof attempt would (likely) be considered irrelevant.

Unlike the previous three proofs the proposition f(fa) = fa is derived posi-
tively from Proposition (6), providing one formula in common in Table 1 and 5.
The three instantiations a, b and g(fa)a is close to ⊥, a and b used by iProver-
Eq. While the structure of the proof search clearly differs from that of iProver-
Eq, this case is arguable the closest of the five Discriminator searches to the
iProver-Eq proof.

7 Proof Search 5

The final proof we consider was not found automatically by Discriminator.
Instead “hints” were given in a file indicating some propositions and instanti-
ations to prefer processing. The proof is longer than the others, but only uses
basic rules of the calculus and no extra heuristics. In particular, it uses no
shallow rules, no congruence closure, and does not seed the instantiations with
subterms of the original problem. Instead a default instantiation ⊥ (analogous
to that used by iProver-Eq) is used in the beginning and instantiations like a

and b are only allowed after they have occurred as discriminating terms. The
relevant propositions produced during the proof search are given in Table 6.
The relevant steps are shown in Figure 5.

The proof search begins by creating and processing a default instantiation
⊥, since there are no disequations and hence no discriminating terms in the
problem and we have instructed Discriminator not to use subterms as initial
instantiations. As a consequence the disequation g(fa)(fb) 6= h⊥ is derived (so
that there are now discriminating terms, though neither will prove useful) and
confronted by g(fa)b = hc to produce g(fa)(fb) 6= g(fa)b. After decomposition
we have disequations fa 6= fa and fb 6= b. After processing fb 6= b, fb and b

are discriminating and can be processed as instantiations. First b is processed
in Step 7 leading to g(fa)(fb) 6= hb, processed in Step 8.

15

5 ((g(fa)(fb)) = (h⊥))

7 ((g(fa)(fb)) = (g(fa)b))

10 ((fa) = (fa))

11 ((fb) = b)

17 ((g(fa)(fb)) = (hb))

23 ∀yz.(((g(f(f⊥))(fy)) = (hz)) ∨ (g(f⊥)y) 6= (hc))

25 ((f(fb)) = (fb))

46 ((fb) = (fb))

65 ∀z.(((g(f(f⊥))(f⊥)) = (hz)) ∨ (g(f⊥)⊥) 6= (hc))

67 (((g(f(f⊥))(f⊥)) = (hb)) ∨ (g(f⊥)⊥) 6= (hc))

82 ((g(f(f⊥))(f⊥)) = (hb))

83 ((hb) = (hb))

217 ∀yz.(((g(f(f(fb)))(fy)) = (hz)) ∨ (g(f(fb))y) 6= (hc))

221 ∀z.(((g(f(f(fb)))(fb)) = (hz)) ∨ (g(f(fb))b) 6= (hc))

225 (((g(f(f(fb)))(fb)) = (hb)) ∨ (g(f(fb))b) 6= (hc))

228 ((g(f(f(fb)))(fb)) = (hb))

230 ((g(fa)(fb)) = (g(f(f(fb)))(fb)))

236 ((fa) = (f(f(fb))))

256 (a = (f(fb)))

352 ((f(fa)) = (fa))

353 ∀yz.(((g(f(fa))(fy)) = (hz)) ∨ (g(fa)y) 6= (hc))

358 ∀z.(((g(f(fa))(fb)) = (hz)) ∨ (g(fa)b) 6= (hc))

363 (((g(f(fa))(fb)) = (hb)) ∨ (g(fa)b) 6= (hc))

365 ((g(f(fa))(fb)) = (hb))

390 ((g(fa)(fb)) = (g(f(fa))(fb)))

396 ((fa) = (f(fa)))

Table 6: Propositions in Proof Search 5

16

Many of the steps from Step 9 to Step 85 are roundabout ways of determining
fa = fa, fb = fb and hb = hb. We leave the reader to go through the details.

Step 85 processes fb as an instantiation leading ultimately to a being a
discriminating term so that it is available as an instantiation. We sketch how
this occurs. Using fb and b as instantiations in Proposition 7 leads to con-
sidering the equation g(f(f(fb)))(fb) = hb. Confronting g(fa)(fb) 6= hb with
g(f(f(fb)))(fb) = hb gives the disequation g(fa)(fb) 6= g(f(f(fb)))(fb). De-
composition leads to fa 6= f(f(fb)) and then a 6= f(fb), making a a discrimi-
nating term.

Step 96 processes a as an instantiation giving f(fa) = fa and

∀yz.g(f(fa))(fy) = hz ∨ g(fa)y 6= hc.

Instiating this with y 7→ b, z 7→ b (in two steps) gives

g(f(fa))(fb) = hb ∨ g(fa)b 6= hc

and then g(f(fa))(fb) = hb. Step 101 processes g(f(fa))(fb) = hb confronting
g(fa)(fb) 6= hb (from Steps 7 and 8) to produce the disequation g(fa)(fb) 6=
g(f(fa))(fb). Decomposition leads to fa 6= f(fa). The final step, Step 105,
processes the equation f(fa) = fa and confronts the disequation fa 6= f(fa)
leading to propositional unsatisfiability.

This final proof has the most potential to be close to the iProver-Eq proof
since both begin with a default instantiation ⊥. The instantiations used by Dis-

criminator are ⊥, a, b and fb, which is the same as the iProver-Eq proof except
for fb. Nevertheless, the varied propositions produced by Discriminator give
clear evidence, that the proof search is quite different. A close examination of
Tables 1 and 6 reveals that still the only proposition in common is f(fa) = fa.

8 Conclusion

We have considered an example proof for iProver-Eq given in [4] and five
proofs given by Discriminator. Although both provers can be said to be
“instantiation-based,” it is clear from the example proof searches that the tech-
niques used by Discriminator are fundamentally different from those used by
iProver-Eq.

References

[1] Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with
choice. Journal of Automated Reasoning 47(4), 451–479 (2011), dOI
10.1007/s10817-011-9233-2

[2] Brown, C.E., Smolka, G.: Extended first-order logic. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, Proceedings. LNCS,
vol. 5674, pp. 164–179. Springer (Aug 2009)

17

0: ⊥

1: 4

2: 3 -5

3: -5 Confrontation -7

4: -7 Decomposition -10 -11

6: -11

7: b -17 -3 | -17

8: -17

9: -10 10

11: 2 23

12: 1 25

14: 25 Confrontation -46

15: -46 46

17: 23 65

18: 65 67

22: 67 82

23: 82 Confrontation -83

24: -83 83

85: (fb) 217

86: 217 221

87: 221 225

88: 225 228

89: 228 Confrontation -230

91: -230 Decomposition -236

93: -236 Decomposition -256

94: -256

96: a 352 -1 | 352

353 -2 | 353

97: 353 358 -353 | 358

98: 358 363 -358 | 363

99: 363 365 -363 | 365 | -4

101: 365 Confrontation -390 17 | -365 | -390 | -83

102: -390 Decomposition -396 390 | -46 | -396

104: -396

105: 352 Confrontation 396 | -352 | -10 | -352

Figure 5: Search Steps Leading to Proof 5

18

[3] Brown, C.E., Smolka, G.: Terminating tableaux for the basic fragment of
simple type theory. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009.
LNCS (LNAI), vol. 5607, pp. 138–151. Springer (Jul 2009)

[4] Korovin, K., Sticksel, C.: iProver-Eq: An instantiation-based theorem
prover with equality. In: Giesl, J., Hähnle, R. (eds.) 5th International Joint
Conference, IJCAR 2010. Lecture Notes in Computer Science, vol. 6173, pp.
196–202. Springer (2010)

[5] Nelson, G., Derek, Oppen, C.: Fast decision procedures based on congruence
closure. Journal of the ACM 27, 356–364 (1980)

19

