Translating Higher-Order to Higher-Order

Chad E. Brown Thibault Gauthier Josef Urban

Czech Technical University in Prague

April 2019

・ロト ・ 四ト ・ 日ト ・ 日下

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Introduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

Introduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

・ロト・西・・川・・田・・日・ 少々ぐ

ATPs are for different logics

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

Introduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

- ATPs are for different logics
 - First-Order

Higher-Order (with choice)

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

Introduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

・ロト・西ト・山田・山田・山下・

- ATPs are for different logics
 - First-Order
 - FOF: untyped/one type
 - TF0: many types
 - TF1: many types with type variables (polymorphism)

(日)

- Higher-Order (with choice)
 - TH0: function types but no type variables
 - TH1: function types and type variables

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

Introduction

HOL4 Library

Families of Translations

Example

Results

- ATPs are for different logics
 - First-Order
 - FOF: untyped/one type
 - TF0: many types
 - TF1: many types with type variables (polymorphism)

- Higher-Order (with choice)
 - TH0: function types but no type variables
 - TH1: function types and type variables
- HOL4 (ITP): Higher-Order + choice + infinity + polymorphism + type definitions

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

Introduction

HOL4 Library

Families of Translations

Example

Results

- Goal: Translate HOL4 library into ATP problems with a variety of ATP representations.
- Proposed Competition allows FO ATPs (e.g., E) to compete against HO ATPs (e.g., LEO-III)
- GRUNGE

Grand Unified Large Theory Benchmarks

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

Introduction

HOL4 Library

Families of Translations

Example

Results

- Goal: Translate HOL4 library into ATP problems with a variety of ATP representations.
- Proposed Competition allows FO ATPs (e.g., E) to compete against HO ATPs (e.g., LEO-III)
- GRUNGE

Grand Unified Large Theory Benchmarks

- Today:
- HOL4 Logic and Library
- Families of Translations
- Example and Preliminary Results

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

Introduction

HOL4 Library

Families of Translations

Example

Results

Introduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

・ロト・西ト・ヨト・ヨー うくぐ

HOL4 Logic (Types)

- o propositions/booleans
- *i* infinite base type
- $\sigma \rightarrow \tau$ function types
- δ(σ₁···σ_n) defined types, e.g., real or list σ.
 defined by giving a provably nonempty predicate over an existing type

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のなの

Types are nonempty.

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

HOL4 Logic (Terms)

- x variable
- $c(\sigma_1, \ldots, \sigma_n)$ primitive or defined constant
 - Primitive Choice(σ) of type ($\sigma \rightarrow o$) $\rightarrow \sigma$
 - Primitive Forall(σ) of type ($\sigma \rightarrow o$) $\rightarrow o$

- Defined $\mathsf{Exists}(\sigma)$ of type $(\sigma \to o) \to o$
- (s t) application
- $(\lambda x.t)$ abstraction

Propositions are terms of type o.

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

HOL4 Standard Library

- 15733 propositions
- 8 axioms
- 2294 definitions
- 13431 theorems

12140 of the theorems give benchmarks of the form:

"Given certain chosen types, constants and previous propositions, prove the theorem."

"Bushy" problems in LTB terminology.

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Defined types depend on terms, so the translations of types and terms must be mutually recursive. In addition, propositions are treated as special. 3 recursive procedures:

- Types \mapsto TPTP types or terms
- ► Terms → TPTP terms
- ▶ Propositions → TPTP formulas

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Introduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

・ロット 4回ット 4回ット 4回ット 4日ッ

Two Kinds of Translations

- Building on Known Translations (HOLyHammer, Sledgehammer)
 - Tag terms with types, Lambda lifting
 - Modifications:
 - More context independent
 - Add axioms to gain more proofs (S,K,I)
 - Use or embed polymorphic types instead of monomorphizing
 - Make use of multiple sorts in the cases other than FOF
- II Set Theory Semantic Motivations
 - Types map to nonempty sets
 - Terms map to sets
 - Guard quantifiers with set membership
 - Propositions map to set theoretic formulas

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Higher-Order Set Theory

- *ι* base type of sets
- $\in: \iota \to \iota \to o$ set membership
- Some unsurprising axioms

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへぐ

Higher-Order Set Theory

- *i* base type of sets
- $\in: \iota \to \iota \to o$ set membership
- Some unsurprising axioms
- ν type of nonempty sets
- \blacktriangleright \in : $\iota \rightarrow \nu \rightarrow o$
- $\Rightarrow: \nu \rightarrow \nu \rightarrow \nu$ for sets of functions
- ap : $\iota \rightarrow \iota \rightarrow \iota$ set application
- lam : ν → (ι → ι) → ι set level abstraction.
 lam X (λx.t) represents the set theoretic function f such that f(x) = t for x ∈ X.
- "Typing" style axioms; β rule

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Tags vs. Guards

When translating $\forall x : \sigma.\varphi$:

- The I-translations use tags when necessary, translating as ∀x.... and using tp(x, ô) instead of x to ensure the occurence of x has type σ.
- The II-translations use set membership guards, translating as ∀x.x ∈ σ̂ → · · ·
- For both I and II (except the FOF cases) for some monomorphic types new base types µ will be declared along with i_µ : µ → ι and j_µ : ι → µ satisfying appropriate properties.
- ▶ When special µ types are used, guards and tags can be avoided.
- TF1-I and TH1-I can map HOL4 types to TPTP types, since TF1 and TH1 support polymorphism.

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Translation of Lambdas

- In the TH0-II case, λ-abstractions are translated using the set level lam operator.
- In other cases, λ-abstractions are translated using λ-lifting. A new function f is declared and is defined to behave in accordance with the body of the λ-abstraction.

(日)

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Introduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Conclusior

・ロト・西ト・ヨト・ヨー うくぐ

Example (SUM CASES)

 $\forall s P : \alpha \to o. \forall fg : \alpha \to \rho. \mathsf{FINITE} \ s \to \\ \mathsf{sum} \ s \ (\lambda x. \mathsf{if} \ Px \ \mathsf{then} \ fx \ \mathsf{else} \ gx) \\ = \mathsf{sum} \ \{x | x \in s \land Px\} \ f + \mathsf{sum} \ \{x | x \in s \land \neg Px\} \ g \end{cases}$

- ρ is HOL4 type of reals
- + is addition on reals

α is an implicitly quantified type variable
 Main Lemma:

 $\begin{array}{l} \forall o: \beta \to \beta \to \beta. \text{monoidal } o \to \\ \forall s \ P: \alpha \to o. \forall fg: \alpha \to \beta. \text{FINITE } s \to \\ \text{iterate } o \ s \ (\lambda x. \text{if } Px \ \text{then } fx \ \text{else } gx) \\ = o \ (\text{iterate } o \ \{x | x \in s \land Px\} \ f) \\ (\text{iterate } o \ \{x | x \in s \land \neg Px\} \ g). \end{array}$

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

Introduction

HOL4 Library

Families of Translations

Example

Results

Example (TH0-II representation)

Focus on:

 $\lambda x.$ if Px then fx else gx

The TH0-II version translates this as:

lam A $(\lambda x.ap (ap (ap (COND \hat{\rho}) (Px)) (fx)) (gx))$

- where COND : $\nu \rightarrow \iota$ is (polymorphic) if-then-else,
- $\hat{\rho}$: ν corresponds to the HOL4 type of reals and
- A : ν is the TH0 variable corresponding to the type variable α.

The corresponding λ -abstraction in the lemma translates as

 $\mathsf{lam} \ A \ (\lambda x.\mathsf{ap} \ (\mathsf{ap} \ (\mathsf{COND} \ B) \ (Px)) \ (fx)) \ (gx))$

Theorem provers can easily match these. Satallax can prove the example in just over 2 minutes. Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Example (most other representations)

- For the representations using lambda lifting, two new functions f and g are defined for the two λ-abstractions.
- In order to prove the theorem, the ATP would need to prove a relationship between f and g to use the lemma.

・ロト ・ 四ト ・ 日ト ・ 日下

• E could not prove the TF0 representations.

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Introduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Conclusior

・ロット 4回ット 4回ット 4回ット 4日ッ

ATP Results

- 19 ATPs
- 60s timeout

Call each ATP on each representation it supports

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - のへで

ATP Results

System	TH1-I	TH0-I	TH0-II	TF1-I	TF0-I	TF0-II	FOF-I	FOF-II	Union
agsyHOL		1374	1187						1605
Beagle					2007	2047			2531
cocATP		899	599						1000
CSE_E							4251	3102	4480
CVC4					4851	3991			5252
E					4277	3622	4618	3844	5118
HOLyHammer	5059								5059
iProver							2778	2894	3355
iProverMo'					2435	1639			2699
LEO-II		2579	1923						3213
Leo-III	6668	5018	3485	3458	4032	3421			7062
Metis							2353	474	2356
Princess					3646	2138			3849
Prover9							2894	1742	3128
Satallax		2207	1292						2494
SPASS							2850	3349	3821
Vampire					4837	4693	4008	4928	5929
Zipperp'n		2252	2161	3771	3099	2576			4203
Union	6824	5209	3771	4608	5732	5073	5165	5108	7377

- Overall 7377 (61%) solved.
- ▶ Leo-III wins using TH1-I representation (6668, 51%)
- TH0-II was harder than TH0-I (Leo-III wins both)

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

ATP Results

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

duction

System	TH1-I	TH0-I	TH0-II	TF1-I	TF0-I	TF0-II	FOF-I	FOF-II	Union	1
agsyHOL		1374	1187						1605	Introd
Beagle					2007	2047			2531	HOL4
cocATP		899	599						1000	
CSE_E							4251	3102	4480	Familie
CVC4					4851	3991			5252	Transl
E					4277	3622	4618	3844	5118	
HOLyHammer	5059								5059	Examp
iProver							2778	2894	3355	
iProverMo'					2435	1639			2699	Result
LEO-II		2579	1923						3213	CI
Leo-III	6668	5018	3485	3458	4032	3421			7062	Concil
Metis							2353	474	2356	
Princess					3646	2138			3849	
Prover9							2894	1742	3128	
Satallax		2207	1292						2494	
SPASS							2850	3349	3821	
Vampire					4837	4693	4008	4928	5929	
Zipperp'n		2252	2161	3771	3099	2576			4203	
Union	6824	5209	3771	4608	5732	5073	5165	5108	7377	

- CVC4 wins TF0-I, Vampire wins TF0-II
- E wins FOF-I, Vampire wins FOF-II

Introduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results

Conclusion

・ロ・・聞・・思・・思・・ しゃくの

Conclusion

- ▶ 12140 HOL4 theorems became 12140 8 ATP problems
- GRUNGE

Grand Unified Large Theory Benchmarks

- Provers for different logics can compete on the same problems.
- Leo-III has significantly improved.
- LTB competition in Brazil will determine official(ish) winner.

Translating Higher-Order to Higher-Order

Brown, Gauthier, Urban

ntroduction

HOL4 Library

Families of Translations

Example

Results