
A THEORY SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX

CHAD E. BROWN

Abstract. We describe an intuitionistic extensional higher-order theory supporting
reasoning about syntax. Binders are represented using higher-order abstract syntax.
The theory has no standard set theoretic model, but we give a nonstandard model
using actions by a monoid of substitutions. The theory has been published in the
Proofgold blockchain. Conjectures in this theory can be used to request a piece of
syntax satisfying a certain property. We give examples in which two untyped λ-terms
are requested via conjectures.

1. Introduction

We present a theory in a simply typed intuitionistic extensional higher-order logic [6]
supporting higher-order abstract syntax [13]. The theory has an M -set model where
M is the monoid of substitutions (up to σ-equality) [1, 7]. M -sets as models for simple
type theory were described in [3]. That taking M to be the monoid of substitutions
gives a model for classical nonextensional higher-order logic has been known since then,
but unpublished. One can find some information in [20].

The M -set model is essentially a special case of a presheaf category. Hofmann also
considered presheaf semantics for higher-order abstract syntax [11]. We leave the clar-
ification of the precise relationship between Hofmann’s presheaf models and the M -set
model described here to future work.

The higher-order theory is given in Section 2. A representation of untyped λ-calculus
in the theory is described in Section 3. In Section 4 we describe the published formal
counterpart in the Proofgold blockchain. An M -set model of the theory is given in
Section 5 along with a proof of a basic soundness result. Related work is considered in
Section 6 and we conclude in Section 7.

2. A Higher-Order Theory of Syntax

We begin by defining a set T of simple types :
• ι : This is a base type which will (eventually) be interpreted as untyped λ-terms
(in de Bruijn representation).
• o : This is a base type of propositions.
• αβ: This is the type of functions from α to β.

We next define a family of simply typed terms. For each type α ∈ T , let Vα be a
countably infinite set of variables of type α. We define a set Λα of terms of type α as
follows:

Date: August 19, 2020.
Czech Technical University in Prague.

1

2 CHAD E. BROWN

Γ ` s
s ∈ A

Γ ` s
s ∈ Γ

Γ ` s
Γ ` t

s≈t
Γ, s ` t

Γ ` s→ t

Γ ` s→ t Γ ` s
Γ ` t

Γ ` s
Γ ` ∀x.s

x ∈ Vα \ FΓ
Γ ` ∀x.s
Γ ` sxt

x ∈ Vα, t ∈ Λα

Γ ` sx = tx

Γ ` s = t
x ∈ Vα \ (FΓ ∪ Fs ∪ Ft) and s, t ∈ Λαβ

Figure 1. Proof Calculus for Intuitionistionistic HOL

• For each variable x of type α, x ∈ Λα.
• B ∈ Λ(ιι)ι. (This is a constant which binds an object variable.)
• P ∈ Λιιι. (This is a constant which forms a pair from two pieces of syntax.)
• If s ∈ Λαβ and t ∈ Λα, then (st) ∈ Λβ.
• If x is a variable of type α and s ∈ Λβ, then (λx.s) ∈ Λαβ.
• If s, t ∈ Λo, then (s→ t) ∈ Λo.
• If x is a variable of type α and s ∈ Λo, then (∀x.s) ∈ Λo.

We use common conventions to omit parentheses. We sometimes include annotations
on λ and ∀ bound variables (e.g., λx : α.s and ∀y : β.s) to indicate the type of the
variable. We define Fs to be the free variables of s and for sets A of terms we define
FA to be

⋃
s∈AFs. We assume a capture avoiding substition sxt is defined. Terms of

type o are called propositions . A sentence is a proposition with no free variables.
The only built-in logical connective is implication (→) and the only built-in quanti-

fier is the universal quantifier (∀). In the context of higher-order logic it is well-known
how to define the remaining logical constructs in a way that respects their intuitionistic
meaning. In each case we use an impredicative definition that traces its roots to Rus-
sell [15] and Prawitz [14]. We define⊥ to be the proposition ∀p : o.p where x is a variable
of type o. We write ¬s for s→ ⊥. We define ∧ to be λqr : o.∀p : o.(q → r → p)→ p and
write s∧ t for (∧s)t. We define ∨ to be λqr : o.∀p : o.(q → p)→ (r → p)→ p and write
s∨t for (∨s)t. For each type α we use ∃x : α.s as notation for ∀p : o.(∀x : α.s→ p)→ p
where p is not x and is not free in s. For equality we write s = t (where s and t are
type α) as notation for ∀p : ααo.pst → pts where p is neither free in s nor t. This is
a modification of Leibniz equality which we will call symmetric Leibniz equality . We
write s 6= t to mean (s = t)→ ⊥.

We define a (βη) conversion relation on terms of the same type in two steps. We first
define s⇒1t if s β or η reduces to t in one step. We then define s≈t to be the reflexive,
symmetric, transitive closure of ⇒1.

Let A be a set of sentences intended to be axioms of a theory. A natural deduction
system for intuitionistic higher-order logic with functional extensionality and axioms
A is given by Figure 1. In particular the rules define when Γ ` s holds where Γ is a

A THEORY SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX 3

finite set of propositions and s is a proposition. Aside from the treatment of functional
extensionality, this is the same as the natural deduction calculus described in [4].1

For our theory of syntax, we include four axioms in A:
• Pairing is injective: ∀xyzw : ι.Pxy = Pzw → x = z ∧ y = w.
• Binding is injective: ∀fg : ιι.Bf = Bg → f = g.
• Binding and pairing give distinct values: ∀xy : ι.∀f : ιι.Pxy 6= Bf .
• Propositional extensionality: ∀pq : o.(p→ q)→ (q → p)→ p = q.

It is not clear if this logic has a model at all. Since pairs are different from binders,
there is no trivial model with ι interpreted as a singleton. However, the axiom that B is
injective means B must be an injection from the function type ιι to ι. Taken together,
we conclude there is no standard set-theoretic model since this would contradict a
form of Cantor’s Theorem. We will give the intended semantics as an M -set model in
Section 5.

3. Representing Untyped Lambda Calculus

We can embed many syntactic constructs into the theory by building on top of the
basic pairing and binding operators. For example, we could embed untyped λ-calculus
by taking P to represent application and B to represent λ-abstraction. Instead of
adopting this simple approach, we will use tagged pairs when representing application
and λ-abstraction, so that there will still be infinitely many pieces of syntax that do
not represent untyped λ-terms. To do this we will need one tag, so let us define nil to
be B(λx.x). Now we can define A : ιιι to be λxy : ι.P nil (P x y) and define L : (ιι)ι to
be λf : ιι.P nil (B f). It is easy to prove A and L are both injective and give distinct
values.

We can now impredicatively define the set of untyped λ-terms relative to a set G
(intended to be the set of possible free variables) as follows. Let us write (G, x) for
the term λy : ι.G y ∨ y = x. Here G has type ιo while x and y have type ι (and are
different). We will define Ter : (ιo)ιo so that Ter is the least relation satisfying three
conditions:

• ∀G : ιo.∀y : ι.Gy → Ter G y,
• ∀G : ιo.∀f : ιι.(∀x : ι.Ter (G, x) (fx))→ Ter G (L f) and
• ∀G : ιo.∀yz : ι.Ter G y → Ter G z → Ter G (A y z).

Technically, the impredicative definition of Ter is given as

Ter := λG : ιo.λx : ι.∀p : (ιo)ιo.
(∀G : ιo.∀y : ι.Gy → p G y)

→ (∀G : ιo.∀f : ιι.(∀x : ι.p (G, x) (fx))→ p G (L f))
→ (∀G : ιo.∀yz : ι.p G y → p G z → p G (A y z))

→ p G x.

1Adding Curry-Howard style checkable proof terms to such a calculus is well-understood and we do
not dwell on this here [17]. Proofs published in Proofgold documents are given by such proof terms.

4 CHAD E. BROWN

We can similarly define one-step β-reduction (relative to a set of variables) as follows:

Beta1 := λG : ιo.λxy : ι.∀r : (ιo)ιιo.
(∀G : ιo.∀f : ιι.∀z.(∀x.Ter (G, x) (fx))→ Ter Gz → r G (A (L f) z) (fz))

→ (∀G : ιo.∀fg : ιι.(∀z.r (G, z) (fz)(gz))→ r G (L f) (L g))
→ (∀G : ιo.∀xyz.r G x z → Ter Gy → r G (A x y) (A z y))
→ (∀G : ιo.∀xyz.r G y z → Ter Gx→ r G (A x y) (A x z))

→ r G x y.
We can then define BetaE G to be the least equivalence relation (relative to the

domain Ter G) containing Beta1 G. We omit the details here.
These definitions give us sufficient material to make conjectures that ask for certain

kinds of untyped λ-terms. Let ∅ be notation for the term λx : ι.⊥ (representing the
empty set of variables). Consider the following sentences:

(1) ∃F : ι.Ter ∅ F ∧ ∀x : ι.BetaE (∅, x) (A F x) x

(2) ∃Y : ι.Ter ∅ Y ∧ ∀f : ι.BetaE (∅, f) (A Y f) (A f (A Y f))

Sentence (1) asserts the existence of an identity combinator while sentence (2) asserts
the existence of a fixed point combinator. In order to prove each sentence a combinator
with the right property must be given as a witness and then be proven to have the
property.2 In the next section we describe how these sentences were published as con-
jectures (with bounties) in the Proofgold network. The solutions were then published
as two theorems (with proofs). The solutions contain the witnesses: L(λx.x) for (1)
and the famous Y -combinator

L(λf.A(L(λx.A f (A x x)))(L(λx.A f (A x x))))

for (2).

4. Theory of Syntax in Proofgold

Proofgold3 is a cryptocurrency network with support for formal logic and mathemat-
ics. At the core of Proofgold is a proof checker for intuitionistic higher-order logic with
functional extensionality. On top of this users can publish theories . A theory consists
of a finite number of primitive constants along with their types and a finite number
of sentences as axioms. A theory is uniquely identified by its 256-bit identifier given
by the Merkle root of the theory (seen as a tree). After a theory has been published,
documents can be published in the theory. Documents can define new objects (using
primitives or previously defined objects), prove new theorems and make new conjec-
tures. In this section we briefly describe the publication of the theory of syntax from
the previous section, the publication of documents giving the conjectures (1) and (2),
and the publication of a document proving the conjectures.

When a theory is published the axioms are associated with public keys which are
marked as the owners of the propositions. Likewise when a document proves a theorem

2Note that in a classical calculus, it would be sufficient to prove such an existential statement by
proving it is impossible for a witness not to exist.

3https://prfgld.github.io

https://prfgld.github.io

A THEORY SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX 5

within a theory, a public key (associated with publisher of the document) is associated
with the proven proposition. These are the only ways propositions can have declared
owners. As a consequence it is possible to determine if a proposition is known (either
as an axiom or as a previously proven theorem) by checking if it has an owner. This
method of keeping up with proven propositions by associating them with public keys
was described in the Qeditas white paper [19] and was part of the Qeditas codebase.4
Ownership of propositions also gives a way of redeeming bounties by proving conjec-
tures. A bounty can be placed on an unproven proposition where this bounty can only
be spent by the owner of a proposition (or the owner of the negated proposition). By
publishing a document resolving the conjecture, the bounty proposition (or its nega-
tion) will become owned by public keys associated with the publisher of the document.
After this the bounty can be claimed.

4.1. The Proofgold Theory of Syntax. We start by giving the theory in the form
it was given to the Proofgold node software.5 This consists of a file specifying the typed
constants and axioms. Such a theory file that begins with the following line:
Theory

We next give a local name (e.g., syn) for the first base type:
Base syn

In principle a theory may use finitely many base types, and each would be given a
local name in order by using multiple Base declarations.

We next declare the pairing operator to have type ιιι and binding operator to have
type (ιι)ι. The syntax for types, terms and proofs consists of a prefix notation which
we leave the reader to tease out of the following examples.
Prim pair : TpArr syn TpArr syn syn
Prim bind : TpArr TpArr syn syn syn

We next make four axiom declarations. We first declare pairing to be injective. The
basic Proofgold syntax has special notation for equations (using Eq followed by the
type), but does not have a special notation for conjunction. We could explicitly define
conjunction and then use it here, but instead we expand away conjunction leaving the
statement of the axiom in the form:

∀xyzw : ι.Pxy = Pzw → ∀p : o.(x = z → y = w → p)→ p.

Axiom pair_inj : All x syn All y syn All z syn All w syn
Imp Eq syn Ap Ap pair x y Ap Ap pair z w
All p Prop Imp Imp Eq syn x z Imp Eq syn y w p p

We next declare the axiom stating binding is injective.
Axiom bind_inj : All f TpArr syn syn All g TpArr syn syn
Imp Eq syn Ap bind f Ap bind g Eq TpArr syn syn f g

4A large part of Proofgold’s code was inherited from the open source Qeditas project. More infor-
mation about Qeditas is at https://iohk.io/en/projects/qeditas/.

5http://grid01.ciirc.cvut.cz/~chad/hoas/HOASthy.pfg

https://iohk.io/en/projects/qeditas/
http://grid01.ciirc.cvut.cz/~chad/hoas/HOASthy.pfg

6 CHAD E. BROWN

We do not have a special notation for negations of equations and we do not explicitly
define ⊥. Instead we give the axiom stating pairing and binding give distinct values in
the following form:

∀xy : ι.∀f : ιι.Pxy = Bf → ∀p : o.p.

Axiom pair_not_bind : All x syn All y syn All f TpArr syn syn
Imp Eq syn Ap Ap pair x y Ap bind f All p Prop p
Finally we declare propositional extensionality as an axiom.

Axiom prop_ext : All p Prop All q Prop
Imp Imp p q Imp Imp q p Eq Prop p q
Publishing a theory or document requires first publishing a commitment (after which

the information cannot be changed), waiting at least 12 blocks (roughly 12 hours) and
then publishing the theory or document. This commitment process was also described
in the Qeditas white paper [19], although “commitments” were called “intentions” there.
For this theory the commitment transaction6 was published August 3, 2020, and the
theory itself was published7 was published August 4, 2020. The Merkle root identifying
the theory is
513140056e2032628f48d11e221efe29892e9a03a661d3b691793524a5176ede

4.2. Making the Proofgold Conjectures. In order to conjecture (1) and (2) we
first need to make formal counterparts of definitions from the previous section. These
definitions were made in two documents within the syntax theory. Each such document
file begins with the line:
Document 513140056e2032628f48d11e221efe29892e9a03a661d3b691793524a5176ede

This identifies that the file is a document and identifies the theory in which it should
be interpreted. The rest of the file gives various declarations that either give local names,
declare names for known objects or propositions, make (possibly new) definitions, give
conjectures and prove (possibly new) theorems. Each declaration in the document file
uses a prefix syntax like the one we saw in the theory file. Instead of showing such a
document file, we instead show the relevant declarations in a Megalodon file. Megalodon
is an interactive theorem prover (the successor to the Egal prover described in [4]) that
can produce Proofgold readable files.

The first document8 contains definitions for ⊥, conjunction, disjunction, ∅ (at type
ιo) and the adjoin operation we informally wrote as (G, x) in Section 3. Coq-style infix
notations for conjunction and disjunction are declared. There are also other definitions
and several theorems we omit here.9

Definition False : prop := forall p:prop, p.
...
Definition and : prop -> prop -> prop := fun A B:prop =>

forall p:prop, (A -> B -> p) -> p.

6Txid: 32c23f32db657c22beca0b7819391a5e3c99a0ae4c579f4c364cfc8053744e9e
7Txid: 01b3eec88f5241523510883707e6bcb29d2cb3d28dbbfc11b1396ebc5ec48c09
8http://grid01.ciirc.cvut.cz/~chad/hoas/PfgHOASDoc1.mg
9The Megalodon syntax, like the Egal syntax before, is very inspired by Coq.

http://grid01.ciirc.cvut.cz/~chad/hoas/PfgHOASDoc1.mg

A THEORY SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX 7

(* Unicode /\ "2227" *)
Infix /\ 780 left := and.
...
Definition or : prop -> prop -> prop := fun A B:prop =>

forall p:prop, (A -> p) -> (B -> p) -> p.

(* Unicode \/ "2228" *)
Infix \/ 785 left := or.
...
Definition emp : set -> prop := fun x => False.
...
Definition adj : (set -> prop) -> set -> set -> prop

:= fun G x y => G y \/ y = x.
After this first document was written, Megalodon produced a Proofgold file which was

then published into the Proofgold blockchain. After publication of the first document
a second document10 was created to define the embedding of untyped λ-calculus in
the theory and make the relevant conjectures. The definitions and previously proven
theorems from the first document were included in a preamble file for Megalodon so
that these were available in the second document. When Megalodon produced the
Proofgold version of the second document, it determined which parts of the preamble
needed to be included in the second document to make it self-contained.

The second document defined nil, A and L as follows:
Definition nil : set := bind (fun x => x).
...
Definition ap : set -> set -> set := fun x y => pair nil (pair x y).
Definition lam : (set -> set) -> set := fun f => pair nil (bind f).

Then the definition of Ter was given impredicatively:
Definition ulamp : (set -> prop) -> set -> prop := fun G x =>

forall p:(set -> prop) -> set -> prop,
(forall G:set -> prop, forall y, G y -> p G y)

-> (forall G:set -> prop, forall f:set -> set,
(forall x, p (adj G x) (f x)) -> p G (lam f))

-> (forall G:set -> prop, forall y z,
p G y -> p G z -> p G (ap y z))

-> p G x.
The definition of one-step β-reduction was also defined impredicatively:

Definition beta1 : (set -> prop) -> set -> set -> prop
:= fun G x y =>
forall r:(set -> prop) -> set -> set -> prop,

(forall G:set -> prop, forall f:set -> set, forall z,
(forall x, ulamp (adj G x) (f x)) -> ulamp G z

10http://grid01.ciirc.cvut.cz/~chad/hoas/PfgHOASDoc2.mg

http://grid01.ciirc.cvut.cz/~chad/hoas/PfgHOASDoc2.mg

8 CHAD E. BROWN

-> r G (ap (lam f) z) (f z))
-> (forall G:set -> prop, forall f g:set -> set,

(forall z, r (adj G z) (f z) (g z)) -> r G (lam f) (lam g))
-> (forall G:set -> prop, forall x y z,

r G x z -> ulamp G y -> r G (ap x y) (ap z y))
-> (forall G:set -> prop, forall x y z,

r G y z -> ulamp G x -> r G (ap x y) (ap x z))
-> r G x y.

A general notion of the equivalence relation closure of a relation (relative to a domain
predicate) was defined and this was used to define β-equivalence.
Definition eqclos : (set -> prop) -> (set -> set -> prop)

-> set -> set -> prop := fun dom q x y =>
forall r:set -> set -> prop,

(forall x y, q x y -> r x y)
-> (forall x, dom x -> r x x)
-> (forall x y, r x y -> r y x)
-> (forall x y z, r x y -> r y z -> r x z)
-> r x y.

...
Definition betaeq : (set -> prop) -> set -> set -> prop

:= fun G => eqclos (ulamp G) (beta1 G).
This is sufficient to write the sentences corresponding to (1) and (2). In Megalodon

we make these conjectures by declaring them as theorems, but omitting the proof using
the Admitted keyword. Such “theorems” will translate to conjectures in Proofgold
documents.
Theorem ulam_id_ex : exists F, ulamp emp F

/\ forall x, betaeq (adj emp x) (ap F x) x.
Admitted.

Theorem ulam_fp_ex : exists Y, ulamp emp Y
/\ forall f, betaeq (adj emp f) (ap Y f) (ap f (ap Y f)).

Admitted.
In the corresponding Proofgold document file, the two conjectures are given as follows:

Conj ulam_id_ex : Ex x1 syn Ap Ap and ...
Conj ulam_fp_ex : Ex x1 syn Ap Ap and ...

Bounties were added to the file by hand as follows:11

Bounty ulam_id_ex 1 NoTimeout
Bounty ulam_fp_ex 2 NoTimeout

When the second document was published, the transaction publishing the transaction
also placed bounties of 1 bar and 2 bars (respectively) on the conjectures. These
bounties could be redeemed by proving the conjectures, as we did in the third document.

11There is something untrue here. In truth both bounties were accidentally placed on the first
conjecture. For the purposes of explanation, we pretend this mistake was not made.

A THEORY SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX 9

4.3. Resolving the Proofgold Conjectures. The third document12 proved theorems
corresponding to the two conjectures. We show parts of the proofs here with some
commentary, but note that they make use of a number of theorems proven in the first
two documents which we will not describe in detail.

We first prove that the identity term represented by L(λx.x) is in Ter G for every G.
The proof makes use of three previously proven results:

• adjI2: ∀G : ιo.∀x : ι.(G, x) x.
• ulamp_var: ∀G : ιo.∀x : ι.G x→ Ter G x.
• ulamp_lam: ∀G : ιo.∀f : ιι.(∀x.Ter (G, x) (fx))→ Ter G(L f).

We begin by stating the theorem.
Theorem ulamp_id : forall G:set -> prop, ulamp G (lam (fun x => x)).

We start the proof by letting an arbitrary but fixed G be given.
let G.

We now apply ulamp_lam leaving us to prove ∀x.Ter (G, x) (λx.x).
apply ulamp_lam.

We let x be given and note that we need to prove Ter (G, x) (λx.x).
let x. prove ulamp (adj G x) x.

The proof is completed by applying ulamp_var and adjI2.
apply ulamp_var. apply adjI2.
Qed.

Next we prove the theorem corresponding to the first conjecture.
Theorem ulam_id_ex : exists F, ulamp emp F

/\ forall x, betaeq (adj emp x) (ap F x) x.
Since the statement is existential we start using the witness tactic giving the obvious
witness term L(λx.x).
witness (lam (fun x => x)).
We now need to prove a conjunction. Applying a previously proven theorem andI
allows us to split this into two subgoals. The first subgoal is immediately proven using
ulamp_id, the theorem we just proved.
apply andI.
- prove ulamp emp (lam (fun x => x)). apply ulamp_id.
Proving the second subgoal requires proving ∀x.BetaE (∅, x) (A (L (λx.x)) x) x. We let
x be given and state what we need to prove.
- let x.

prove betaeq (adj emp x) (ap (lam (fun x => x)) x) x.
A previously proven theorem (betaeq_beta) allows us to conclude BetaE holds if the
left hand side is a β-redex with the right hand side as its reduct.

apply betaeq_beta (adj emp x) (fun x => x) x.

12http://grid01.ciirc.cvut.cz/~chad/hoas/PfgHOASDoc3.mg

http://grid01.ciirc.cvut.cz/~chad/hoas/PfgHOASDoc3.mg

10 CHAD E. BROWN

This still leaves two subgoals verifying that we have well-formed λ-terms which are
easily proven.

+ prove forall y, ulamp (adj (adj emp x) y) y.
let y. apply ulamp_var. apply adjI2.

+ prove ulamp (adj emp x) x. apply ulamp_var. apply adjI2.
Qed.

The final proof in the third document corresponded to the second conjecture. We
briefly discuss it here.
Theorem ulam_fp_ex : exists Y, ulamp emp Y

/\ forall f, betaeq (adj emp f) (ap Y f) (ap f (ap Y f)).
We want to give the Y combinator as the witness, but we will first use local abbreviations
to make it easier to state the Y combinator and intermediate properties.
set W : set -> set := fun f => lam (fun x => ap f (ap x x)).
set Y := lam (fun f => (ap (W f) (W f))).
witness Y.
The fact that Y satisfies the conjunction follows from a number of intermediate results.
First we prove the following claim:
claim L1: forall G:set -> prop, forall f x,

ulamp (adj (adj G f) x) (ap f (ap x x)).
We omit the proof here. We next prove the following claim whose proof we also omit:
claim L2: forall G:set -> prop, forall f, ulamp (adj G f) (W f).
We then apply andI to split the proof into two subgoals. The first subgoal requires
checking Y is an untyped λ-term (with no free variables) and is straightforward. The
second subgoal requires proving that A Y f is β-equivalent to A f (A Y f), with f
as the only free variable. This is also not difficult, but requires using symmetry and
transitivity of β-equivalence (previously proven theorems) to give a few intermediate
forms and argue the β-equivalence at each step. We omit further details.

After the third document was published, the public key of the publisher became the
owner of the proven propositions. Consequently, the 3 bars of bounties could be (and
were) collected from the propositions.

5. A Model of the Theory

We now turn to the description of the intended model of the theory.

5.1. Untyped Lambda Terms and the Monoid. The set Λ̂ of untyped λ terms are
given by the grammar

s, t ::= n|(st)|(λs)
where n ranges over natural numbers (de Bruijn indices [5]). Substitutions (σ, τ) are
functions from natural numbers to Λ̂. Let M be the set of all substititutions.

Let ↑∈ M be the substitution taking each natural number n to the de Bruijn index
n + 1. Given a term a and substitution σ there is a substitution operation giving a
term aσ defined as follows: nσ is σ(n), (st)σ is ((sσ)(tσ)) and (λs)σ is (λ(sσ′)) where
σ′ ∈M is given by σ′(0) = 0 and σ′(n+ 1) = σ(n) ↑.

A THEORY SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX 11

The substitution ε which maps each n to the term n is called the identity substitution.
Given σ, τ ∈ M , we can compose σ and τ to form στ by taking each n to the term
τ(σn) (where the application of τ to σn is via the substitution operation). It is easy to
see that this operation on substitutions is associative and that ε is a two-sided identity
for the operation. Hence M is a monoid.

An M -set is a set A with an operation taking a ∈ A and σ ∈ M to an element
aσ ∈ A. This operation is called the action of the M -set. The action must satisfy two
properties: aε = a for all a ∈ A and (aσ)τ = a(στ) for all a ∈ A and σ, τ ∈ M . We
will interpret simple types as M -sets following [3].

A very easy example of anM -set is Λ̂ itself. We take the action to be the substitution
operation. Indeed this will be the interpretation of ι.

5.2. The Model. We define an M -set Dα for each α ∈ T . As already mentioned we
define Dι to be theM -set of untyped λ-terms Λ̂ with the action given by the substitution
operation.

We have many options for interpreting the type o of propositions. In [3] we considered
two possibilities giving classical (nonextensional) models: Do could be the two element
set with a trivial action or Do could be the power set ofM with an action taking Xσ to
{τ |στ ∈ X}. Here we take Do to be a Heyting algebra given by a subset of the power
set of M . This Heyting algebra corresponds to how truth values are interpreted in a
presheaf topos.

To be specific we take Do to be the set of right ideals of M . A set X ⊆M is a right
ideal if στ ∈ X whenever σ ∈ X and τ ∈M . Note that two specific right ideals are the
empty set and M . In fact, arbitrary intersections and arbitrary unions of right ideals
are right ideals. This is enough to know the right ideals form a Heyting algebra. The
action on Do is given by taking Xσ to be {τ |στ ∈ X}. It is easy to see that Xσ is a
right ideal: If στ ∈ X and µ ∈M , then στµ ∈ X and so τµ ∈ Xσ.

Finally we interpret function types. Assume Dα and Dβ are M -sets. We take Dαβ to
be the M -set

{f : M ×Dα → Dβ|∀στ ∈M.∀a ∈ Dα.f(σ, a)τ = f(στ, aτ)}.

The action is given by taking fµ to be fµ(σ, a) = f(µσ, a).
We next need to interpret the simply typed terms to be elements of the corresponding

M -set. Two specific terms we will need to interpret are the constants P and B.
Let P̂ be the function given by P̂(σ, s)(τ, t) = ((sτ)t). It is easy to check P̂ is in Dιιι

and P̂µ = P̂.
We take B̂ to be the function taking B̂(σ, f) = (λf(↑, 0)) for each σ ∈M and f ∈ Dιι.

It is easy to check B̂ ∈ D(ιι)ι and B̂µ = B̂.
In order to prove soundness for this interpretation of B we will need to know the

function sending f ∈ Dιι to B̂(σ, f) is injective. We prove this fact here.

Lemma 5.1. Let f, g ∈ Dιι and σ ∈M be given. If B̂(σ, f) = B̂(σ, g), then f = g.

Proof. Suppose B̂(σ, f) = B̂(σ, g). This means (λf(↑, 0)) = (λg(↑, 0)). This means
f(↑, 0) and g(↑, 0) are the same untyped λ-term. We will prove f = g. Let σ ∈M and

12 CHAD E. BROWN

a ∈ Dι. Let a :: σ be the substitution sending 0 to a and n+ 1 to σ(n). Since f, g ∈ Dιι
we know

f(σ, a) = f(↑ (a :: σ), 0(a :: σ)) = f(↑, 0)(a :: σ) = g(↑, 0)(a :: σ)
= g(↑ (a :: σ), 0(a :: σ)) = g(σ, a)

as desired. �

We also prove an injectivity style result for P̂.

Lemma 5.2. Let a, b, c, d ∈ Dι and σ, τ ∈ M be given. If P̂(σ, a)(τ, b) = P̂(σ, c)(τ, d),
then aτ = cτ and b = d.

Proof. Assume P̂(σ, a)(τ, b) = P̂(σ, c)(τ, d), i.e., (aτ)b and (cτ)d are the same untyped
λ-term. Thus aτ = cτ and b = d as desired. �

We are now in a position to define the evaluation function for simply typed terms.
Since we need to interpret variables, the evaluation function will depend on an as-
signment sending each variable x ∈ Vα to an element of Dα. As in [3] the evaluation
function also depends on an element of the monoid M . Given an assignment ϕ and
substitution σ ∈M , we let ϕσ be the assignment taking x to ϕ(x)σ (i.e., we can act on
assignments). Also, given an assignment ϕ, a variable x ∈ Vα and an element a ∈ Dα,
we let ϕxa be the substitution which sends x to a and each other y to ϕ(y).

We will denote the evaluation function by JsKσϕ where s ∈ Λα, σ ∈ M and ϕ is an
assignment. We define it by giving the following equations.

JxKσϕ = ϕx

JPKσϕ = P̂

JBKσϕ = B̂

JstKσϕ = JsKσϕ(ε, JtKσϕ)

Jλx.sKσϕ(τ, a) = JsKστ(ϕτ)xa
Js→ tKσϕ =

⋃
{Z ∈ Do|∀µ ∈M.µ ∈ Z → ε ∈ JsKσµϕµ → ε ∈ JtKσµϕµ}

J∀x.sKσϕ = {τ ∈M |∀µ ∈M.∀a ∈ Dα.ε ∈ JsKστµ(ϕτµ)xa
} where x ∈ Vα

We state a sequence of results with an indication of how to prove them. Proofs of
analogous results (in a classical setting) can be found in Appendix A of [3].

Each of the next three lemmas is provable by induction on s.

Lemma 5.3. If ϕ(x) = ψ(x) for all x ∈ Fs, then JsKσϕ = JsKσψ.

Lemma 5.4. JsKσϕτ = JsKστϕτ .

Proof. The application and λ-abstraction cases follow from straightforward applications
of the inductive hypotheses. Due to the formulations of interpretations of implication
and universal quantifications, these cases do not require the use of the induction hy-
pothesis. We only show the implication case. We need to prove Js→ tKσϕτ and Js→ tKστϕτ
are the same right ideals.

First assume µ ∈ Js → tKσϕτ and so τµ ∈ Js → tKσϕ. There must be a right ideal Z
such that τµ ∈ Z and ∀ν ∈ Z.ε ∈ JsKσνϕν → ε ∈ JtKσνϕν . We claim that Zτ is a right

A THEORY SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX 13

ideal witnessing µ ∈ Js→ tKστϕτ . Since τµ ∈ Z we know µ ∈ Zτ . Let ν ∈ Zτ such that
ε ∈ JsKστνϕτν be given. Since τν ∈ Z we infer ε ∈ JtKστνϕτν as desired.

Next assume µ ∈ Js → tKστϕτ . There must be a right ideal Z such that µ ∈ Z and
∀ν ∈ Z.ε ∈ JsKστνϕτν → ε ∈ JtKστνϕτν . We need to prove µ ∈ Js → tKσϕτ , i.e., τµ ∈ Js → tKσϕ.
Let Z ′ be {ξ ∈ M |∃ν ∈ Z.ξ = τν}. It is easy to check that Z ′ is a right ideal and
τµ ∈ Z ′. Let ξ ∈ Z ′ such that ε ∈ JsKσξϕξ be given. Let ν ∈ Z be such that ξ = τν and
so ε ∈ JsKστνϕτν . We conclude ε ∈ JtKστνϕτν and so ε ∈ JtKσξϕξ as desired. �

Lemma 5.5. Jsxt Kσϕ = JsKσϕxJtKσϕ
Proof. We show the λ-abstraction case. The other cases are straightforward. Assume
y is a variable of type α different from x and not free in t. We need to prove J(λy.s)xt Kσϕ
and Jλy.sKσϕxJtKσϕ

are the same functions. Let µ ∈ M and a ∈ Dα be given. We begin by
computing

J(λy.s)xt K
σ
ϕ(µ, a) = Jλy.sxt K

σ
ϕ(µ, a) = Jsxt K

σµ
(ϕµ)ya

= JsKσµ
((ϕµ)ya)

x
JtKσµ

(ϕµ)
y
a

where the last step is the result of the inductive hypothesis for s. Since y is not free in
t, Lemma 5.3 allows us to infer that JtKσµ

(ϕµ)ya
equals JtKσµϕµ. Hence we have

J(λy.s)xt K
σ
ϕ(µ, a) = JsKσµ

((ϕµ)ya)
x
JtKσµϕµ

Since y and x are distinct, the assignment ((ϕµ)ya)
x
JtKσµϕµ

can also be written as ((ϕµ)xJtKσµϕµ)ya.
Using Lemma 5.4 we can also write the assignment as ((ϕxJtKσϕ)µ)ya. Hence we have

J(λy.s)xt K
σ
ϕ(µ, a) = JsKσµ

((ϕxJtKσϕ
)µ)ya

= Jλy.sKσϕxJtKσϕ
(µ, a)

as desired. �

The following results are easy to prove and justify soundness of conversion.

Lemma 5.6. J(λx.s)tKσϕ = Jsxt Kσϕ

Lemma 5.7. If x 6∈ Fs, then Jλx.sxKσϕ = JsKσϕ

Lemma 5.8. If s⇒1t, then JsKσϕ = JtKσϕ

Lemma 5.9. If s≈t, then JsKσϕ = JtKσϕ
Using Lemma 5.4 it becomes clear that we have the following alternative characteri-

zation of when a substitution is in the interpretation of an implication.

Lemma 5.10. Let s, t ∈ Λo, σ, τ ∈M and ϕ be an assignment. τ is in Js→ tKσϕ if and
only if for all µ ∈M τµ ∈ JsKσϕ implies τµ ∈ JtKσϕ.

Proof. Assume τ ∈ Js→ tKσϕ and τµ ∈ JsKσϕ. Let Z be a right ideal such that τ ∈ Z and
∀ν ∈ Z.ε ∈ JsKσνϕν → ε ∈ JtKσνϕν . From τµ ∈ JsKσϕ we obtain ε ∈ JsKστµϕτµ by Lemma 5.4.
Since τ ∈ Z and Z is a right ideal, we know τµ ∈ Z and so ε ∈ JtKστµϕτµ. Applying
Lemma 5.4 again we have τµ ∈ JtKσϕ.

14 CHAD E. BROWN

For the other direction suppose we know τµ ∈ JsKσϕ implies τµ ∈ JtKσϕ for all µ ∈ M .
Let Z be the right ideal given by {τµ|µ ∈M}. It is straightforward to check Z witnesses
τ ∈ Js→ tKσϕ. �

We next prove the following characterization of the interpretation of symmetric Leib-
niz equality.

Lemma 5.11. Let s, t ∈ Λα, σ, τ ∈M and ϕ be an assignment. τ is in Js = tKσϕ if and
only if JsKσϕτ = JtKσϕτ .

Proof. For both directions fix p to be a variable of type ααo free in neither s nor t.
Recall that s = t is ∀p.pst→ pts. For the first direction assume τ ∈ Js = tKσϕ. We need
to prove JsKσϕτ = JtKσϕτ . Let b ∈ Dα be JtKσϕτ . Let f : M × Dα → Do be defined by
f(µ, a) = {ν ∈ M |aν = bµν}. It is clear that f(µ, a) is a right ideal and hence in Do.
To verify f(µ, a)ξ = f(µξ, aξ) we note that ν ∈ f(µ, a)ξ iff ξν ∈ f(µ, a) iff aξν = bµξν
iff ν ∈ f(µξ, aξ). Hence f ∈ Dαo. Let q : M × Dα → Dαo be defined by q(µ, a) = fµ.
It is easy to see that q ∈ Dααo. From τ ∈ Js = tKσϕ we infer ε ∈ Jpst→ ptsKστ

(ϕτ)pq
. Note

that JpstKστ
(ϕτ)pq

is q(ε, JsKσϕτ)(ε, b) (using Lemmas 5.4 and 5.3 and the definition of b).
We compute

q(ε, JsKσϕτ)(ε, b) = f(ε, b) = {ν ∈M |bν = bν}.
Hence ε ∈ JpstKστ

(ϕτ)pq
. By Lemma 5.10 we now know ε ∈ JptsKστ

(ϕτ)pq
. Note that JpstKστ

(ϕτ)pq

is q(ε, b)(ε, JsKσϕτ). We compute

q(ε, b)(ε, JsKσϕτ) = f(ε, JsKσϕτ) = {ν ∈M |JsKσϕτν = bν}.

Since ε ∈ q(ε, b)(ε, JsKσϕτ) we conclude JsKσϕτ = b as desired.
For the other direction assume JsKσϕτ = JtKσϕτ . We need to prove τ ∈ J∀p.pst→ ptsKσϕ.

Let µ ∈ M and q ∈ Dααo be given. We need to prove ε ∈ Jpst → ptsKστµ
ϕτµpq

. We use
Lemma 5.10 to prove this. Let ν ∈ M such that ν ∈ JpstKστµ

ϕτµpq
be given. Using

Lemma 5.3 we have
ν ∈ q(ε, JsKστµϕτµ)(ε, JtKστµϕτµ).

From JsKσϕτ = JtKσϕτ and Lemma 5.4 we know JsKστµϕτµ = JtKστµϕτµ. Hence

ν ∈ q(ε, JtKστµϕτµ)(ε, JsKστµϕτµ)

and so ν ∈ JptsKστµ
ϕτµpq

as desired. �

Before moving on to the main soundness result, we first prove the four axioms are
true in the model.

Lemma 5.12. ε ∈ J∀xyzw : ι.Pxy = Pzw → x = z ∧ y = wKσϕ.

Proof. Let µ1, µ2, µ3, µ4 ∈M and a, b, c, d ∈ Dι be given. Let ψ be

(((((((ϕµ1)
x
a)µ2)

y
b)µ3)

z
c)µ4)

w
d

and note ψ(x) = aµ2µ3µ4, ψ(y) = bµ3µ4, ψ(z) = cµ4 and ψ(w) = d. We need to prove

ε ∈ JPxy = Pzw → x = z ∧ y = wKσµ1µ2µ3µ4ψ .

A THEORY SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX 15

We will use Lemma 5.10. Let µ5 ∈ M such that µ5 ∈ JPxy = PzwKσµ1µ2µ3µ4ψ be given.
By Lemma 5.11 we have P̂(ε, aµ2µ3µ4)(ε, bµ3µ4)µ5 = P̂(ε, cµ4)(ε, d)µ5 and so

P̂(ε, aµ2µ3µ4)(µ5, bµ3µ4µ5) = P̂(ε, cµ4)(µ5, dµ5).

By Lemma 5.2 we know aµ2µ3µ4µ5 = cµ4µ5 and bµ3µ4µ5 = dµ5. We need to prove
µ5 ∈ Jx = z ∧ y = wKσµ1µ2µ3µ4ψ , i.e., µ5 ∈ J∀p : o.(x = z → y = w → p) → pKσµ1µ2µ3µ4ψ .
Let µ6 ∈M and X ∈ Do be given. We need to prove

ε ∈ J(x = z → y = w → p)→ pKσµ1µ2µ3µ4µ5µ6
(ψµ5µ6)

p
X

.

Let µ7 ∈ M such that µ7 ∈ Jx = z → y = w → pKσµ1µ2µ3µ4µ5µ6
(ψµ5µ6)

p
X

be given. We need to
prove µ7 ∈ JpKσµ1µ2µ3µ4µ5µ6

(ψµ5µ6)
p
X

, i.e., µ7 ∈ X. Since

(ψµ5µ6)
p
X(x)µ7 = aµ2µ3µ4µ5µ6µ7 = cµ4µ5µ6µ7 = (ψµ5µ6)

p
X(z)µ7

we know µ7 ∈ Jx = zKσµ1µ2µ3µ4µ5µ6
(ψµ5µ6)

p
X

. Since

(ψµ5µ6)
p
X(y)µ7 = bµ3µ4µ5µ6µ7 = dµ5µ6µ7 = (ψµ5µ6)

p
X(w)µ7

we know µ7 ∈ Jy = wKσµ1µ2µ3µ4µ5µ6
(ψµ5µ6)

p
X

. Hence µ7 ∈ X as desired by applying Lemma 5.10
twice. �

Lemma 5.13. ε ∈ J∀fg : ιι.Bf = Bg → f = gKσϕ.

Proof. Let µ1, µ2 ∈M and h, k ∈ Dιι be given. We need to prove

ε ∈ JBf = Bg → f = gKσµ1µ2
(((ϕµ1)

f
h)µ2)

g
k

.

We will use Lemma 5.10. Let µ3 ∈ M such that µ3 ∈ JBf = BgKσµ1µ2
(((ϕµ1)

f
h)µ2)

g
k

be given.

We need to prove µ3 ∈ Jf = gKσµ1µ2
(((ϕµ1)

f
h)µ2)

g
k

. Let ψ be (((ϕµ1)
f
h)µ2)

g
k and note that

ψ(f) = hµ2 and ψ(g) = k. Using Lemma 5.11 we know B̂(ε, hµ2)µ3 = B̂(ε, k)µ3 and
that it is enough to prove hµ2µ3 = kµ3. Since B̂(ε, hµ2)µ3 = B̂(ε, k)µ3, we know
B̂(µ3, hµ2µ3) = B̂(µ3, kµ3) and so hµ2µ3 = kµ3 by Lemma 5.1. �

Lemma 5.14. ε ∈ J∀xy : ι.∀f : ιι.Pxy 6= BfKσϕ.

Proof. Let µ1, µ2, µ3 ∈M , a, b ∈ Dι and h ∈ Dιι be given. Let ψ be (((((ϕµ1)
x
a)µ2)

y
b)µ3)

f
h

and note ψ(x) = aµ2µ3, ψ(y) = bµ3 and ψ(f) = h. We need to prove

ε ∈ JPxy = Bf → ⊥Kσµ1µ2µ3ψ .

We will use Lemma 5.10. Let µ4 ∈ M such that µ4 ∈ JPxy = BfKσµ1µ2µ3ψ be given. We
will prove a contradiction. By Lemma 5.11 we must have JPxyKσµ1µ2µ3ψ µ4 = JBfKσµ1µ2µ3ψ µ4.
Hence P̂(ε, aµ2µ3)(ε, bµ3)µ4 = B̂(ε, h)µ4. Thus the untyped λ-term ((aµ2µ3)(bµ3))µ4

must equal (λh(↑, 0))µ4. This is impossible since one is an application and the other is
a λ-abstraction. �

Lemma 5.15. ε ∈ J∀pq : o.(p→ q)→ (q → p)→ p = qKσϕ.

16 CHAD E. BROWN

Proof. Let µ1, µ2 ∈M and X, Y ∈ Do be given. Let ψ be (((ϕµ1)
p
X)µ2)

q
Y and note that

ψ(p) = Xµ2 and ψ(q) = Y . We need to prove

ε ∈ J(p→ q)→ (q → p)→ p = qKσµ1µ2ψ .

Let µ3 ∈M such that µ3 ∈ Jp→ qKσµ1µ2ψ be given. We need to prove

µ3 ∈ J(q → p)→ p = qKσµ1µ2ψ .

Let µ4 ∈M such that µ3µ4 ∈ Jq → pKσµ1µ2ψ be given. We need to prove

µ3µ4 ∈ Jp = qKσµ1µ2ψ .

By Lemma 5.11 it is enough to prove Xµ2µ3µ4 = Y µ3µ4. Suppose τ ∈ Xµ2µ3µ4. Then
µ3µ4τ ∈ Xµ2 = JpKσµ1µ2ψ . Since µ3 ∈ Jp → qKσµ1µ2ψ we know µ3µ4τ ∈ JqKσµ1µ2ψ = Y by
Lemma 5.10. Hence τ ∈ Y µ3µ4 and so Xµ2µ3µ4 ⊆ Y µ3µ4. It remains to prove the
reverse inclusion.

Suppose τ ∈ Y µ3µ4. Then µ3µ4τ ∈ JqKσµ1µ2ψ . Since µ3µ4 ∈ Jq → pKσµ1µ2ψ we know
µ3µ4τ ∈ JpKσµ1µ2ψ = Xµ2. Hence τ ∈ Xµ2µ3µ4 and we are done. �

The main result is soundness.

Theorem 5.1. If Γ ` s and τ ∈ JuKσϕ for every u ∈ Γ, then τ ∈ JsKσϕ.

Proof. We prove this by induction on the derivation of Γ ` s. In each case we assume
we have a σ, τ and ϕ such that τ ∈ JuKσϕ for every u ∈ Γ. The inductive hypothesis
can be applied to the premises of the rule (possibly changing σ, τ and ϕ) and we must
prove τ ∈ JsKσϕ.

Soundness of the axiom rule follows from Lemmas 5.12, 5.13, 5.14 and 5.15. Sound-
ness of the hypothesis rule is clear. Soundness of the conversion rule follows from
Lemma 5.9. Lemma 5.10 can be used to easily prove soundness for the implication
introduction and elimination rules.

For the introduction rule for the universal quantifier suppose x is a variable of type
α not free in Γ. We must prove τ ∈ J∀x.sKσϕ. By definition this means we need to
prove ε ∈ JsKστµ(ϕτµ)xa

for all µ ∈ M and a ∈ Dα. Let µ ∈ M and a ∈ Dα be given. We
will apply the inductive hypothesis with στµ, ε and (ϕτµ)xa. Since τ ∈ JuKσϕ we also
know τµ ∈ JuKσϕ for each u ∈ Γ. Using Lemma 5.4 we know ε ∈ JuKστµϕτµ for each u ∈ Γ.
Since x is not free in Γ we also know ε ∈ JuKστµ(ϕτµ)xa

for each u ∈ Γ. Hence the inductive
hypothesis applies and we have ε ∈ JsKστµ(ϕτµ)xa

as desired.
We now consider the elimination rule for the universal quantifier. The inductive

hypothesis gives τ ∈ J∀x.sKσϕ. Hence ε ∈ JsKστµ(ϕτµ)xa
for every µ ∈ M and a ∈ Dα.

In particular, ε ∈ JsKστε(ϕτε)xJtKστϕτ
. That is, ε ∈ JsKστ(ϕτ)xJtKστϕτ

. Applying Lemma 5.4 and

Lemma 5.5 we have

JsKστ(ϕτ)xJtKστϕτ
= JsKστ(ϕxJtKσϕ)τ

= JsKσ(ϕxJtKσϕ)
τ = Jsxt K

σ
ϕτ.

Hence ε ∈ Jsxt Kσϕτ . That is, τ ∈ Jsxt Kσϕ as desired.
We finally consider the functional extensionality rule. Let s and t have type αβ and

let x be a variable of type α not free in Γ, s or t. We need to prove τ ∈ Js = tKσϕ.

A THEORY SUPPORTING HIGHER-ORDER ABSTRACT SYNTAX 17

Applying Lemma 5.11 we need to prove the two functions JsKσϕτ and JtKσϕτ are equal.
Let µ ∈M and a ∈ Dα be given. Recalling the action on functions, we compute

(JsKσϕτ)(µ, a) = (JsKσϕτµ)(ε, a) = JsKστµϕτµ(ε, a) = JsKστµ(ϕτµ)xa
(ε, a)

and
(JtKσϕτ)(µ, a) = (JtKσϕτµ)(ε, a) = JtKστµϕτµ(ε, a) = JtKστµ(ϕτµ)xa

(ε, a).

It remains to prove the identity

JsKστµ(ϕτµ)xa
(ε, a) = JtKστµ(ϕτµ)xa

(ε, a).

Note that τµ ∈ JuKσϕ for every u ∈ Γ. Hence ε ∈ JuKστµϕτµ for every u ∈ Γ. Furthermore,
since x is not free in Γ, we have ε ∈ JuKστµ(ϕτµ)xa

for every u ∈ Γ. Applying the inductive
hypothesis with στµ, ε and (ϕτµ)xa we have ε ∈ Jsx = txKστµ(ϕτµ)xa

. Using Lemma 5.11 we
conclude JsxKστµ(ϕτµ)xa

= JtxKστµ(ϕτµ)xa
. Hence JsKστµ(ϕτµ)xa

(ε, a) = JtKστµ(ϕτµ)xa
(ε, a) as desired. �

6. Related Work

In addition to the presheaf semantics of Hofmann mentioned earlier [11], work on per-
mutation models should be mentioned. Gabbay and Pitts used Fraenkel-Mostowski per-
mutation models to model logics capable of abstract reasoning about fresh names [10].
The action given by the permutation group on a set of atoms in [10] arguably plays
a similar role to the action given by the monoid of substitutions here. Gabbay and
Mathijssen provide a nominal axiomatisation of the lambda-calculus in [8, 9]. Similar
permutation based nominal techniques were used by Urban to formalize properties of
syntax with binders in the Isabelle theorem prover [18].

7. Conclusion

We have given an intuitionistic extensional higher-order theory supporting reasoning
syntax using higher-order abstract syntax. The theory has a counterpart in the Proof-
gold network. As a simple test case we have published definitions of untyped λ-terms
and β-equivalence, conjectures about the existence of certain combinators, and proofs
resolving these conjectures.

Acknowledgment

This work has been supported by the European Research Council (ERC) Consol-
idator grant nr. 649043 AI4REASON. An earlier version of this work was formalized
in Coq [12] using the Autosubst package [16] while part of Professor Gert Smolka’s
Programming Systems Lab at Saarland University.

References

[1] Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. Journal of Functional
Programming 1(4), 375–416 (1991)

[2] Barendregt, H.: The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam,
revised edn. (1984)

[3] Brown, C.E.: M-set models. In: Reasoning in Simple Type Theory: Festschrift in Honor of Peter
B. Andrews on His 70th Birthday. College Publications (2008)

18 CHAD E. BROWN

[4] Brown, C.E., Pąk, K.: A tale of two set theories. In: Kaliszyk, C., Brady, E.C., Kohlhase, A.,
Coen, C.S. (eds.) Intelligent Computer Mathematics - 12th International Conference, CICM 2019,
Prague, Czech Republic, July 8-12, 2019, Proceedings. Lecture Notes in Computer Science, vol.
11617, pp. 44–60. Springer (2019)

[5] de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae (Pro-
ceedings) 34(5), 381–392 (1972)

[6] Church, A.: A formulation of the simple theory of types. The Journal of Symbolic Logic 5, 56–68
(1940)

[7] Dowek, G., Hardin, T., Kirchner, C.: Higher order unification via explicit substitutions. Informa-
tion and Computation 157(1–2), 183 – 235 (2000)

[8] Gabbay, M.J., Mathijssen, A.: The lambda-calculus is nominal algebraic. In: Benzmüller, C.,
Brown, C., Siekmann, J., Statman, R. (eds.) Reasoning in simple type theory: Festschrift in
Honour of Peter B. Andrews on his 70th Birthday. Studies in Logic and the Foundations of
Mathematics, IFCoLog (2008)

[9] Gabbay, M.J., Mathijssen, A.: A nominal axiomatisation of the lambda-calculus. Journal of Logic
and Computation 20(2), 501–531 (2010)

[10] Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax Involving Binders. In: Proceed-
ings of the 14th Annual Symposium on Logic in Computer Science (LICS 1999). pp. 214–224.
IEEE Computer Society Press (1999)

[11] Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Proceedings of the 14th
Annual IEEE Symposium on Logic in Computer Science. pp. 204–213. LICS ’99, IEEE Computer
Society, Washington, DC, USA (1999)

[12] The Coq development team: The Coq proof assistant reference manual. LogiCal Project (2020),
http://coq.inria.fr, version 8.12

[13] Pfenning, F., Elliot, C.: Higher-order abstract syntax. SIGPLAN Notices 23(7), 199–208 (Jun
1988)

[14] Prawitz, D.: Natural deduction: a proof-theoretical study. Dover (2006)
[15] Russell, B.: The Principles of Mathematics. Cambridge University Press (1903)
[16] Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: Reasoning with de bruijn terms and parallel

substitutions. In: Zhang, X., Urban, C. (eds.) Interactive Theorem Proving - 6th International
Conference, ITP 2015, Nanjing, China, August 24-27, 2015. Logical Notes in Artifical Intelligence,
Springer-Verlag (Aug 2015)

[17] Sørensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Rapport (Københavns
universitet. Datalogisk institut), Datalogisk Institut, Københavns Universitet (1998)

[18] Urban, C.: Nominal techniques in isabelle/hol. Journal of Automated Reasoning 40(4), 327–356
(2008)

[19] White, B.: Qeditas: A formal library as a bitcoin spin-off (2016), http://qeditas.org/docs/
qeditas.pdf

[20] Zhang, X.: Using LEO-II to Prove Properties of an Explicit Substitution M-set Model. Bachelor’s
thesis, Saarland University (2008)

http://www.gabbay.org.uk/papers.html#lamcna
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#newaas
http://coq.inria.fr
http://qeditas.org/docs/qeditas.pdf
http://qeditas.org/docs/qeditas.pdf

	1. Introduction
	2. A Higher-Order Theory of Syntax
	3. Representing Untyped Lambda Calculus
	4. Theory of Syntax in Proofgold
	4.1. The Proofgold Theory of Syntax
	4.2. Making the Proofgold Conjectures
	4.3. Resolving the Proofgold Conjectures

	5. A Model of the Theory
	5.1. Untyped Lambda Terms and the Monoid
	5.2. The Model

	6. Related Work
	7. Conclusion
	Acknowledgment
	References

