Higher-Order Logic and Set Theory: Stronger Together

Chad E. Brown

Czech Technical University in Prague

July 8, 2019
the European Research Council (ERC) grant nr. 649043 AI4REASON

Outline

Higher-Order
Logic and Set
Theory: Stronger Together

Introduction

Higher-Order Logic

Higher-Order Tarski-Grothendieck
Specification of Pairs and Functions
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions
Many Fake
Theorems
Many Fake Theorems
Conclusion

Conclusion

Introduction

- Egal is a proof checker / interactive theorem prover for higher-order set theory.
- Specifically: Higher-Order Tarski-Grothendieck (HOTG)

ZFC+universes

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Introduction

- Egal is a proof checker / interactive theorem prover for higher-order set theory.
- Specifically: Higher-Order Tarski-Grothendieck (HOTG) ZFC+universes
- Why another prover?

Higher-Order Logic

Higher-Order Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Introduction

- Egal is a proof checker / interactive theorem prover for higher-order set theory.
- Specifically: Higher-Order Tarski-Grothendieck (HOTG)

ZFC+universes

- Why another prover?
- de Bruijn criteria: proofs easily checked by small independent proof checker

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Introduction

- Egal is a proof checker / interactive theorem prover for higher-order set theory.
- Specifically: Higher-Order Tarski-Grothendieck (HOTG)
ZFC+universes
- Why another prover?
- de Bruijn criteria: proofs easily checked by small independent proof checker
- Quantifying over functions allows abstract statements (avoiding "fake theorems")

Higher-Order

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Introduction

- Egal is a proof checker / interactive theorem prover for higher-order set theory.
- Specifically: Higher-Order Tarski-Grothendieck (HOTG)
ZFC+universes
- Why another prover?
- de Bruijn criteria: proofs easily checked by small independent proof checker
- Quantifying over functions allows abstract statements (avoiding "fake theorems")
- Most other libraries can be interpreted in HOTG, and so could be ported to Egal.

Introduction

- Egal is a proof checker / interactive theorem prover for higher-order set theory.
- Specifically: Higher-Order Tarski-Grothendieck (HOTG)
ZFC+universes
- Why another prover?
- de Bruijn criteria: proofs easily checked by small independent proof checker
- Quantifying over functions allows abstract statements (avoiding "fake theorems")
- Most other libraries can be interpreted in HOTG, and so could be ported to Egal.
- Some of the interpretations exploit "fake theorems"

Theorem Proving in Set Theory

- Trybulec, et. al.: Mizar 1973-now
- First-Order Tarski-Grothendieck
- Scheme for Replacement
- Interactive Theorem Prover / Proof Checker
- Soft Typing System
- Mathematical Input Style
- Quaife 1992 (JAR 1992)
- von Neumann-Gödel-Bernays (Class Theory)
- First Order Finitely Axiomatizable (even as clauses)
- Modification of Boyer, et. al. 1986 (JAR 1986)
- Using Otter: Automated Theorem Prover

Theorem Proving in Set Theory

- Trybulec, et. al.: Mizar 1973-now
- First-Order Tarski-Grothendieck
- Scheme for Replacement
- Interactive Theorem Prover / Proof Checker
- Soft Typing System
- Mathematical Input Style
- Quaife 1992 (JAR 1992)
- von Neumann-Gödel-Bernays (Class Theory)
- First Order Finitely Axiomatizable (even as clauses)
- Modification of Boyer, et. al. 1986 (JAR 1986)
- Using Otter: Automated Theorem Prover
- Isabelle-ZF (JAR 1996)
- Metamath

Two Kinds of Pairs in Mizar

- $[x, y]$: Kuratowski pair $\{\{x\},\{x, y\}\}$
- $\langle x, y\rangle$: Function from $\{1,2\}$ with $1 \mapsto x, 2 \mapsto y$

Sometimes both are used.
Example: Definition in catalg_1:

func homsym(a,b) equals [0, <* $\mathrm{a}, \mathrm{b} *>$];

Higher-Order Logic

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Two Kinds of Pairs in Mizar

- $[x, y]$: Kuratowski pair $\{\{x\},\{x, y\}\}$
- $\langle x, y\rangle$: Function from $\{1,2\}$ with $1 \mapsto x, 2 \mapsto y$

Sometimes both are used.
Example: Definition in catalg_1:

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck

Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Two Kinds of Pairs in Mizar

- $[x, y]$: Kuratowski pair $\{\{x\},\{x, y\}\}$
- $\langle x, y\rangle$: Function from $\{1,2\}$ with $1 \mapsto x, 2 \mapsto y$

Sometimes both are used.
Example: Definition in catalg_1:

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Quaife's Pairs

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

- Quaife uses $\{\{x\},\{x,\{y\}\}\}$
- Why not Kuratowski pairs?

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Quaife's Pairs

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

- Quaife uses $\{\{x\},\{x,\{y\}\}\}$
- Why not Kuratowski pairs?
- Kuratowski pairs made the theory inconsistent.

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Quaife's Pairs

- Quaife uses $\{\{x\},\{x,\{y\}\}\}$
- Why not Kuratowski pairs?
- Kuratowski pairs made the theory inconsistent.
- Let V be the class of all sets
- Quaife simplified some of the Boyer, et. al., clauses
- preferring $(x, y) \in V \rightarrow \ldots$ over $x \in V, y \in V \rightarrow \ldots$.

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Quaife's Pairs

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

- Quaife uses $\{\{x\},\{x,\{y\}\}\}$
- Why not Kuratowski pairs?
- Kuratowski pairs made the theory inconsistent.
- Let V be the class of all sets
- Quaife simplified some of the Boyer, et. al., clauses
- preferring $(x, y) \in V \rightarrow \ldots$ over $x \in V, y \in V \rightarrow \ldots$.
- Problem if a proper class is used in a pair.
- Kuratowski pairs give $(\emptyset, V)=(\emptyset, \emptyset)$ leading to $V \in V$

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Quaife's Pairs

Higher-Order
Logic and Set
Theory:
Stronger
Together

- Quaife uses $\{\{x\},\{x,\{y\}\}\}$
- Why not Kuratowski pairs?
- Kuratowski pairs made the theory inconsistent.
- Let V be the class of all sets
- Quaife simplified some of the Boyer, et. al., clauses
- preferring $(x, y) \in V \rightarrow \ldots$ over $x \in V, y \in V \rightarrow \ldots$.
- Problem if a proper class is used in a pair.
- Kuratowski pairs give $(\emptyset, V)=(\emptyset, \emptyset)$ leading to $V \in V$
- Quaife's pairs satisfy the "fake theorem" that (x, y) is never equal to an ordered pair of sets if either x or y is a class.

Fundamental Property of Pairing

- P is a "pairing operator" if it takes two sets and returns a set such that

$$
\forall x y z w . P \times y=P z w \equiv x=z \wedge y=w
$$

- If we have simple type theory over the set theory, we can define this a higher-order pairing predicate:

$$
\lambda P: \iota \iota . \forall x y z w . P \times y=P z w \equiv x=z \wedge y=w
$$

- A "real theorem" should work for any pairing:

$$
\forall P \text {.pairing } P \rightarrow \Phi[P]
$$

Higher-Order

Higher-Order Tarski-
Grothendieck
Specification of Pairs and

Functions

Implementation

- Sometimes we may want to prove $\Phi[P]$ for a specific pairing operator P and other times we may want the general case.

Outline

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

Introduction
Higher-Order Logic

Higher-Order Tarski-Grothendieck

Specification of Pairs and Functions

Implementation of Pairs and Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Many Fake Theorems

Conclusion
Conclusion

Higher-Order Logic (Quick Intro)

- Simple Type Theory (Church 1940)
- ι - base type
- o - type of propositions
- $\sigma \tau$ - type of functions from σ to τ

Typed Terms:

- \mathcal{V}_{σ} - variables x of type σ
- \mathcal{C}_{σ} - constants c of type σ
- Λ_{σ} - terms of type σ generated by

$$
s, t::=x|c| s t|\lambda x . s| s \rightarrow t \mid \forall x . s
$$

Brown

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
restricted to well-typed terms.

- $(\lambda x . s)$ has type $\sigma \tau$ where $x \in \mathcal{V}_{\sigma}$ and $s \in \Lambda_{\tau}$. It means the function sending x to s.

Higher-Order Logic (Quick Intro)

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck

- Formula - term of type o
- Definable: $\wedge, \vee, \equiv,=, \exists, \exists$! (Russell-Prawitz)
- Sometimes write λx : $\sigma . s$ and $\forall x$: $\sigma . s$.
- $s \approx t$ means s and t are $\beta \eta$-convertible.

$$
s, t::=x|c| s t|\lambda x . s| s \rightarrow t \mid \forall x . s
$$

Specification of
Pairs and
Functions
Implementation

Natural Deduction

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown
Γ ranges over finite sets of formulas. Natural Deduction defines $\Gamma \vdash s$.

$$
\begin{aligned}
& \overline{\Gamma \vdash s} s \text { known } \quad \overline{\Gamma \vdash s} s \in \Gamma \quad \frac{\Gamma \vdash s}{\Gamma \vdash t} s \approx t \\
& \Gamma \cup\{s\} \vdash t \\
& \Gamma \vdash s \rightarrow t \\
& \frac{\Gamma \vdash s_{y}^{x}}{\Gamma \vdash \forall x: \sigma . s} y \in \mathcal{V}_{\sigma} \text { fresh } \\
& \Gamma \vdash \forall x: \sigma . s \\
& \Gamma \vdash s_{t}^{x} t \in \Lambda_{\sigma}
\end{aligned}
$$

Higher-Order Logic

Higher-Order
Tarski-
Grothendieck
Specification of Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Proof Terms

Add names to assumptions. Γ is $u_{1}: s_{1}, \ldots, u_{n}: s_{n}$. Proof term calculus for judgment $\Gamma \vdash \mathcal{D}: s$ meaning " \mathcal{D} is a proof of s under assumptions Γ."

Higher-Order Logic and Set

Theory:
Stronger
Together
Brown

Introduction
Higher-Order
Logic
Higher-Order

$$
\begin{gathered}
\overline{\Gamma \vdash a: s} a: s \text { known } \overline{\Gamma \vdash u: s} u: s \in \Gamma \\
\frac{\Gamma \vdash \mathcal{D}: s}{\Gamma \vdash \mathcal{D}: t} s \approx t
\end{gathered}
$$

$$
\frac{\Gamma \cup\{u: s\} \vdash \mathcal{D}: t}{\vdash(\lambda u: s . \mathcal{D}): s \rightarrow t} \quad \frac{\Gamma \vdash \mathcal{D}: s \rightarrow t \quad \Gamma \vdash \mathcal{E}: s}{\Gamma \vdash(\mathcal{D} \mathcal{E}): t}
$$

Tarski-
Grothendieck
Specification of Pairs and
Functions
Implementation of Pairs and
Functions
Many Fake
Theorems
Conclusion

Proof Terms

Add names to assumptions. Γ is $u_{1}: s_{1}, \ldots, u_{n}: s_{n}$. Proof term calculus for judgment $\Gamma \vdash \mathcal{D}: s$ meaning " \mathcal{D} is a proof of s under assumptions Γ."

$$
\begin{gathered}
\frac{\Gamma \vdash \mathcal{D}_{y}^{x}: s_{y}^{x}}{\Gamma \vdash(\lambda x: \sigma . \mathcal{D}): \forall x: \sigma . s} y \in \mathcal{V}_{\sigma} \text { fresh } \\
\frac{\Gamma \vdash \mathcal{D}: \forall x: \sigma . s}{\Gamma \vdash(\mathcal{D} t): s_{t}^{x}} t \in \Lambda_{\sigma}
\end{gathered}
$$

- de Bruijn criteria: proofs easily checked by small independent proof checker

Outline

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

Introduction
Higher-Order Logic
Higher-Order Tarski-Grothendieck

Specification of Pairs and Functions

Implementation of Pairs and Functions
Many Fake Theorems

Conclusion

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Higher-Order(ish) Set Theories

- Isabelle-ZF: Paulson JAR 1993 (FO, but λ 's)
- HOL with ZF: Gordon TPHOLs 1996
- Isabelle/HOLZF: Obua 2006

Why Higher-Order Tarski-Grothendieck?

- Mizar's MML can be translated into HOTG.
(Brown Pąk CICM2019)
- HOL style libraries can be translated into HOTG.
- Dependent Type Theories (like Coq and Lean) can be translated into HOTG.

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Set Theory Constants

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown
Take ι to mean the type of sets.

- $\varepsilon_{\sigma}:(\sigma o) \sigma$
- \in : ८o
- $\emptyset: \iota$
- $\bigcup: \iota$
- $\wp: \iota$
- $r: \iota(\iota) \iota$
- \mathcal{U} : ι

Choice Operator

Membership
Empty Set
Big Unions
Power Sets
Replacement: $\{t \mid x \in s\}$ means rs ($\lambda x . t)$
Universe Operator

Introduction

Higher-Order Logic

Higher-Order Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Axioms

Set of axioms:
Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

- Choice for ε_{σ} (scheme due to σ)
- Propositional Extensionality
- Functional Extensionality (scheme)
- Set Extensionality
- E-Induction
- Empty
- Union
- Power
- Replacement
- Universes

ND system with axioms is Henkin complete for HOTG. Egal is a proof checker for the ND system with proof terms.

Relative Consistency

- Is HOTG too strong? Is it consistent?
- A standard model can be constructed given a 2-inaccessible cardinal (Brown Pąk Kaliszyk ITP 2019)
- As large cardinals go, 2-inaccessible is not very large.

Introduction

Higher-Order Logic

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Basic Definitions

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

Introduction

- If-then-else can be defined from ε.
- Unordered pairs $\{s, t\}$ can be defined as

$$
\{\text { if } \emptyset \in X \text { then } s \text { else } t \mid X \in \wp(\wp \emptyset)\}
$$

- Singletons $\{s\}$ are defined as $\{s, s\}$.
- $s \cup t$ is $\bigcup\{s, t\}$.

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Natural Numbers as Finite Ordinals

- 0 is \emptyset.
- s^{+}is $s \cup\{s\}$.
- 1 is $0^{+}, 2$ is $1^{+}, \ldots$
- A predicate N : ι o for the natural numbers is definable by higher-order quantification:

$$
\lambda n: \iota . \forall p: \iota 0 . p 0 \wedge(\forall x . p x \rightarrow p(x \cup\{x\})) \rightarrow p n
$$

- Theorem: $\forall n . \mathrm{N} n \rightarrow n \in \mathcal{U} \emptyset$

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Natural Numbers as Finite Ordinals

- 0 is \emptyset.
- s^{+}is $s \cup\{s\}$.
- 1 is $0^{+}, 2$ is $1^{+}, \ldots$
- A predicate N : $\iota 0$ for the natural numbers is definable by higher-order quantification:

$$
\lambda n: \iota . \forall p: \iota 0 . p 0 \wedge(\forall x . p x \rightarrow p(x \cup\{x\})) \rightarrow p n
$$

- Theorem: $\forall n . N n \rightarrow n \in \mathcal{U} \emptyset$
- Is this a fake theorem?

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Natural Numbers as Finite Ordinals

- 0 is \emptyset.
- s^{+}is $s \cup\{s\}$.
- 1 is $0^{+}, 2$ is $1^{+}, \ldots$
- A predicate N : ıo for the natural numbers is definable by higher-order quantification:

$$
\lambda n: \iota . \forall p: \iota 0 . p 0 \wedge(\forall x . p x \rightarrow p(x \cup\{x\})) \rightarrow p n
$$

- Theorem: $\forall n . \mathrm{N} n \rightarrow n \in \mathcal{U} \emptyset$
- Is this a fake theorem?
- "Real" abstract version:

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and
Functions
Many Fake
Theorems
Conclusion

$$
(\forall p: \iota o . p z \wedge(\forall x . p x \rightarrow p(S x)) \rightarrow p n) \rightarrow n \in \mathcal{U} \emptyset
$$

Natural Numbers as Finite Ordinals

- 0 is \emptyset.
- s^{+}is $s \cup\{s\}$.
- 1 is $0^{+}, 2$ is $1^{+}, \ldots$
- A predicate N : ıo for the natural numbers is definable by higher-order quantification:

$$
\lambda n: \iota . \forall p: \iota \circ . p 0 \wedge(\forall x . p x \rightarrow p(x \cup\{x\})) \rightarrow p n
$$

- Theorem: $\forall n . \mathrm{N} n \rightarrow n \in \mathcal{U} \emptyset$
- Is this a fake theorem?
- "Real" abstract version:

$$
\begin{aligned}
& \forall z: \iota . \forall S: \iota . \forall n: \iota . \\
& (\forall p: \iota o . p z \wedge(\forall x . p x \rightarrow p(S x)) \rightarrow p n) \rightarrow n \in \mathcal{U} \emptyset
\end{aligned}
$$

- Abstract version is not a theorem. Specific is fake.

Definition by Epsilon (Membership) Recursion

Functions from sets to sets can be defined by \in-recursion. Suppose $\Phi: \iota(\iota) \iota$ satisfies

$$
\forall X F G .(\forall x \cdot x \in X \rightarrow F x=G x) \rightarrow \Phi X F=\Phi X G .
$$

Under this condition, Φ defines a function $\mathrm{R} \Phi$ satisfying

$$
\forall X . \mathrm{R} \Phi X=\Phi X(\lambda x \cdot \mathrm{R} \Phi x)
$$

Technique (JAR 2015):

- Define GФ : $\iota \circ$ to be the least relation R such that if

$$
\forall x . x \in X \rightarrow R x(F x)
$$

Higher-Order

Higher-Order Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and
Functions
Many Fake
Theorems
Conclusion
then $R X(\Phi X F)$.

- Prove $\mathbf{G} \Phi$ is a total, functional relation.
- Use ε to define the function $\mathrm{R} \Phi$: ι.

Outline

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

Introduction
Higher-Order Logic
Higher-Order Tarski-Grothendieck

Specification of Pairs and Functions

Implementation of Pairs and Functions
Many Fake Theorems

Conclusion
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Basic Properties

- P: ८и
(s, t) means Pst
- $\forall x y w z .(x, y)=(w, z) \equiv x=w \wedge y=z$

Higher-Order
Logic and Set
Theory:
Stronger Together

Brown

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Basic Properties

- P: ८и
(s, t) means Pst
- $\forall x y w z .(x, y)=(w, z) \equiv x=w \wedge y=z$
- L: $\iota(\iota) \iota$

Higher-Order
Logic and Set
Theory:
Stronger Together

Brown

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Basic Properties

- P: ८и
(s, t) means Pst
- $\forall x y w z .(x, y)=(w, z) \equiv x=w \wedge y=z$
- L: $\quad \iota(\iota) \iota$

$$
\lambda x \in \text { s.t means } \operatorname{Ls}(\lambda x . t)
$$

- $\forall X F G$.

$$
(\forall x . x \in X \rightarrow F x=G x) \equiv(\lambda x \in X . F x)=\lambda x \in X . G x
$$

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Basic Properties

- P: ८и (s, t) means Pst
- $\forall x y w z .(x, y)=(w, z) \equiv x=w \wedge y=z$
- $\mathrm{L}: \iota(\iota) \iota$

$$
\lambda x \in \text { s.t means } \operatorname{Ls}(\lambda x . t)
$$

- $\forall X F G$.

$$
(\forall x . x \in X \rightarrow F x=G x) \equiv(\lambda x \in X . F x)=\lambda x \in X . G x
$$

- $\mathbf{Q}^{\Sigma}: \iota(\iota) \iota$ $\Sigma x \in$ s.t means $\mathbf{Q}^{\Sigma} s(\lambda x . t)$
- $\forall X Y z . z \in(\Sigma x \in X . Y x) \equiv$

$$
\exists x \cdot x \in X \wedge \exists y \cdot y \in Y x \wedge z=(x, y)
$$

Higher-Order Logic and Set Theory:
Stronger
Together
Brown

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Basic Properties

- \mathbf{P} : ८८ (s, t) means Pst
- $\forall x y w z .(x, y)=(w, z) \equiv x=w \wedge y=z$
- L: $\iota(\iota \iota) \iota$ $\lambda x \in s . t$ means $\operatorname{Ls}(\lambda x . t)$
- $\forall X F G$.

$$
(\forall x . x \in X \rightarrow F x=G x) \equiv(\lambda x \in X . F x)=\lambda x \in X . G x
$$

- $\mathrm{Q}^{\Sigma}: \iota(\iota \iota) \iota$ $\Sigma x \in s . t$ means $\mathbf{Q}^{\Sigma} s(\lambda x . t)$
- $\forall X Y z . z \in(\Sigma x \in X . Y x) \equiv$

$$
\exists x \cdot x \in X \wedge \exists y \cdot y \in Y x \wedge z=(x, y)
$$

- $\mathbf{Q}^{\Pi}: \iota(\iota) \iota$
$\Pi x \in$ s.t means $\mathbf{Q}^{\Pi} s(\lambda x . t)$
- $\forall X Y f . f \in(\Pi x \in X . Y x) \equiv$

$$
\exists F .(\forall x . x \in X \rightarrow F x \in Y x) \wedge f=\lambda x \in X . F x
$$

Properties of Application

- A: ८८
$s t$ means Ast when $s, t: \iota$
- Beta:

$$
\forall X F x . x \in X \rightarrow(\lambda x \in X . F x) x=F x
$$

- A typing-like property:
$\forall X Y f x . f \in(\Pi x \in X . Y x) \rightarrow x \in X \rightarrow f x \in Y x$

Higher-Order Logic

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Avoiding and Exploiting Fake Theorems

- Since we can quantify over higher types and the specifications are propositions...
- a proposition can be stated without giving an implementation of pairs, functions, etc.
- "For all pairing operators, for all lambda operators, etc., the property holds."

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Avoiding and Exploiting Fake Theorems

- Since we can quantify over higher types and the

Introduction
Higher-Order Logic

Higher-Order
Tarski-
Grothendieck

- "For all pairing operators, for all lambda operators, etc., the property holds."
- Alternatively, we can prove a property using a specific implementation satisfying nice properties.
- This specific, potentially "fake" theorem, may still be useful to prove the abstract version.

Specification of Pairs and
Functions
Implementation of Pairs and
Functions
Many Fake
Theorems
Conclusion

Translating from Dependent Type Theory

- Need representations of pairs, functions, dependent sums, dependent products and more.
- Each Type universe can be interpreted as a Grothendieck Universe U.
- Need to ensure that if $X \in U$ and $Y x \in U$ for $x \in X$, then $\Sigma x \in X . Y x$ and $\Pi x \in X . Y x$ are in U.
- Are these "fake theorems'?

Brown

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Translating from Dependent Type Theory

- Need representations of pairs, functions, dependent sums, dependent products and more.
- Each Type universe can be interpreted as a Grothendieck Universe U.
- Need to ensure that if $X \in U$ and $Y x \in U$ for $x \in X$, then $\Sigma x \in X . Y x$ and $\Pi x \in X . Y x$ are in U.
- Are these "fake theorems'?
- Yes, a bit fake.

Brown

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and
Functions
Many Fake
Theorems
Conclusion

Translating from Dependent Type Theory

- Need representations of pairs, functions, dependent sums, dependent products and more.
- Each Type universe can be interpreted as a Grothendieck Universe U.
- Need to ensure that if $X \in U$ and $Y x \in U$ for $x \in X$, then $\Sigma x \in X . Y x$ and $\Pi x \in X . Y x$ are in U.
- Are these "fake theorems"?
- Yes, a bit fake.
- The universe Prop can be taken as $\{0,1\}$, i.e. 2 or $\wp(1)$.
- Need to ensure that if $Y x \in\{0,1\}$ for $x \in X$, then $\Pi x \in X . Y x$ is 0 or 1 .

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and
Functions
Many Fake
Theorems
Conclusion

- Is this a "fake theorem"?

Translating from Dependent Type Theory

- Need representations of pairs, functions, dependent sums, dependent products and more.
- Each Type universe can be interpreted as a Grothendieck Universe U.
- Need to ensure that if $X \in U$ and $Y x \in U$ for $x \in X$, then $\Sigma x \in X . Y x$ and $\Pi x \in X . Y x$ are in U.
- Are these "fake theorems"?
- Yes, a bit fake.
- The universe Prop can be taken as $\{0,1\}$, i.e. 2 or $\wp(1)$.
- Need to ensure that if $Y x \in\{0,1\}$ for $x \in X$, then $\Pi x \in X . Y_{x}$ is 0 or 1 .
- Is this a "fake theorem"?
- Yes. Not true for Graph representation of functions.

Extra "Fake" Properties

- $\wp 1$ is closed under Π, for some Π.

$$
\forall X Y .(\forall x . x \in X \rightarrow Y x \in \wp 1) \rightarrow(\Pi x \in X . Y x) \in \wp 1
$$

(This was Aczel's original motivation for his function representation.)

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Extra "Fake" Properties

- $\wp 1$ is closed under Π, for some Π.

$$
\forall X Y .(\forall x . x \in X \rightarrow Y x \in \wp 1) \rightarrow(\Pi x \in X . Y x) \in \wp 1
$$

(This was Aczel's original motivation for his function representation.)

- Functions applied outside their domain give 0 :

$$
\forall X F_{x} \cdot x \notin X \rightarrow\left(\lambda x \in X . F_{x}\right) x=0
$$

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Extra "Fake" Properties

- $\wp 1$ is closed under Π, for some Π.

$$
\forall X Y .(\forall x . x \in X \rightarrow Y x \in \wp 1) \rightarrow(\Pi x \in X . Y x) \in \wp 1
$$

(This was Aczel's original motivation for his function representation.)

- Functions applied outside their domain give 0 :

$$
\forall X F x . x \notin X \rightarrow(\lambda x \in X . F x) x=0
$$

- Pairs are functions with domain 2:

$$
\forall F .(\lambda x \in 2 . F x)=(F 0, F 1)
$$

Extra "Fake" Properties

- $\wp 1$ is closed under Π, for some Π.

$$
\forall X Y .(\forall x . x \in X \rightarrow Y x \in \wp 1) \rightarrow(\Pi x \in X . Y x) \in \wp 1
$$

(This was Aczel's original motivation for his function representation.)

- Functions applied outside their domain give 0 :

$$
\forall X F_{x} \cdot x \notin X \rightarrow(\lambda x \in X . F x) x=0
$$

- Pairs are functions with domain 2:

$$
\forall F .(\lambda x \in 2 . F x)=(F 0, F 1)
$$

- $\wp 1$ is closed under Σ.

$$
\begin{aligned}
\forall X . X \in \wp 1 & \rightarrow \forall Y .(\forall x . x \in X \rightarrow Y x \in \wp 1) \\
& \rightarrow(\Sigma x \in X . Y x) \in \wp 1
\end{aligned}
$$

Consequences

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown
The following are provable from the previous properties:

- $\forall X . X \times X=X^{2}$
that is, $\forall X .(\Sigma x \in X . X)=\Pi x \in 2 . X$
- $\forall x y .(x, y) 0=x$

Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Outline

Higher-Order
Logic and Set
Theory:
Stronger
Together

Introduction

Brown

Introduction
Higher-Order Logic

Higher-Order Tarski-Grothendieck

Specification of Pairs and Functions
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Many Fake Theorems
Conclusion

Conclusion

Pairs as Disjoint Sums

- Idea: (X, Y) is $\{(0, x) \mid x \in X\} \cup\{(1, y) \mid y \in Y\}$
- Morse considered using disjoint sums for "class-level" pairs in 1965, but ultimately used a different implementation.

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and Functions

Many Fake
Theorems
Conclusion

Pairs as Disjoint Sums

- Idea: (X, Y) is $\{(0, x) \mid x \in X\} \cup\{(1, y) \mid y \in Y\}$
- Morse considered using disjoint sums for "class-level" pairs in 1965, but ultimately used a different implementation.
- Problem: What are $(0, x)$ and $(1, y)$?

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and Functions

Many Fake
Theorems
Conclusion

Pairs as Disjoint Sums

- Idea: (X, Y) is $\{(0, x) \mid x \in X\} \cup\{(1, y) \mid y \in Y\}$
- Morse considered using disjoint sums for "class-level" pairs in 1965, but ultimately used a different implementation.
- Problem: What are $(0, x)$ and $(1, y)$?
- We could use Kuratowski pairs inside the definition, but let's just have one kind of pair.

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and Functions

Many Fake
Theorems
Conclusion

Pairs as Disjoint Sums

- Idea: (X, Y) is $\{(0, x) \mid x \in X\} \cup\{(1, y) \mid y \in Y\}$

Higher-Order
Logic

- Morse considered using disjoint sums for "class-level" pairs in 1965, but ultimately used a different implementation.
- Problem: What are $(0, x)$ and $(1, y)$?
- We could use Kuratowski pairs inside the definition, but let's just have one kind of pair.
- Solution: First define $\mathbf{I}_{0}: \iota$ and $\mathbf{I}_{1}: \iota$ so that later $\mathbf{I}_{0} x=(0, x)$ and $\mathbf{I}_{1} y=(1, y)$.

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and Functions

Pairs as Disjoint Sums

- Idea: (X, Y) is $\{(0, x) \mid x \in X\} \cup\{(1, y) \mid y \in Y\}$

Higher-Order
Logic

- Morse considered using disjoint sums for "class-level" pairs in 1965, but ultimately used a different implementation.
- Problem: What are $(0, x)$ and $(1, y)$?
- We could use Kuratowski pairs inside the definition, but let's just have one kind of pair.
- Solution: First define $\mathbf{I}_{0}: \iota$ and $\mathbf{I}_{1}: \iota$ so that later $\mathbf{I}_{0} x=(0, x)$ and $\mathbf{I}_{1} y=(1, y)$.
- Then: $(X, Y):=\left\{\mathbf{I}_{0} x \mid x \in X\right\} \cup\left\{\mathbf{I}_{1} y \mid y \in Y\right\}$

Pairs as Disjoint Sums

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

- Define \mathbf{I}_{1} by \in-recursion:
$\mathbf{I}_{1} X=\{0\} \cup\left\{\mathbf{I}_{1} x \mid x \in X\right\}$

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Pairs as Disjoint Sums

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

- Define \mathbf{I}_{1} by \in-recursion:

$$
\mathbf{I}_{1} X=\{0\} \cup\left\{\mathbf{I}_{1} x \mid x \in X\right\}
$$

- Define $\mathbf{I}_{0}: u$ by $\lambda X .\left\{\mathbf{I}_{1} \mid x \in X\right\}$.

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Pairs as Disjoint Sums

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

- Define \mathbf{I}_{1} by \in-recursion:

$$
\mathbf{I}_{1} X=\{0\} \cup\left\{\mathbf{I}_{1} x \mid x \in X\right\}
$$

- Define $\mathbf{I}_{0}: \iota$ by $\lambda X .\left\{\mathbf{I}_{1} x \mid x \in X\right\}$.
- Easy: $\forall X Y . I_{0} X \neq \mathbf{I}_{1} Y$ and $\mathrm{I}_{0} 0=0$.

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Pairs as Disjoint Sums

Higher-Order Logic and Set Theory: Stronger Together

Brown

- Define \mathbf{I}_{1} by \in-recursion:

$$
\mathbf{I}_{1} X=\{0\} \cup\left\{\mathbf{I}_{1} x \mid x \in X\right\}
$$

- Define $\mathbf{I}_{0}: \iota$ by $\lambda X .\left\{\mathbf{I}_{1} x \mid x \in X\right\}$.
- Easy: $\forall X Y . I_{0} X \neq \mathbf{I}_{1} Y$ and $I_{0} 0=0$.
- Define a one-sided inverse $\mathbf{I}^{-}: \iota$ recursively:

$$
\mathbf{I}^{-} X=\left\{\mathbf{I}^{-} x \mid x \in X \backslash\{0\}\right\}
$$

Introduction

Higher-Order Logic

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and Functions

Many Fake
Theorems
Conclusion

Pairs as Disjoint Sums

- Define \mathbf{I}_{1} by \in-recursion:

$$
\mathbf{I}_{1} X=\{0\} \cup\left\{\mathbf{I}_{1} x \mid x \in X\right\}
$$

- Define $\mathbf{I}_{0}: \iota$ by $\lambda X .\left\{\mathbf{I}_{1} x \mid x \in X\right\}$.
- Easy: $\forall X Y . I_{0} X \neq \mathbf{I}_{1} Y$ and $I_{0} 0=0$.
- Define a one-sided inverse $\mathbf{I}^{-}: \iota$ recursively:

$$
\mathbf{I}^{-} \boldsymbol{X}=\left\{\mathbf{I}^{-} \boldsymbol{x} \mid x \in X \backslash\{0\}\right\}
$$

- $\forall X . \mathbf{I}^{-}\left(\mathrm{I}_{1} X\right)=X$ by \in-induction.

Introduction

Higher-Order Logic

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and Functions

Many Fake
Theorems
Conclusion

Pairs as Disjoint Sums

- Define \mathbf{I}_{1} by \in-recursion:

$$
\mathbf{I}_{1} X=\{0\} \cup\left\{\mathbf{I}_{1} x \mid x \in X\right\}
$$

- Define $\mathbf{I}_{0}: \iota$ by $\lambda X .\left\{\mathbf{I}_{1} x \mid x \in X\right\}$.
- Easy: $\forall X Y . I_{0} X \neq \mathbf{I}_{1} Y$ and $I_{0} 0=0$.
- Define a one-sided inverse $\mathbf{I}^{-}: \iota$ recursively:

$$
\mathbf{I}^{-} X=\left\{\mathbf{I}^{-} \boldsymbol{x} \mid x \in X \backslash\{0\}\right\}
$$

- $\forall X . \mathrm{I}^{-}\left(\mathrm{I}_{1} X\right)=X$ by \in-induction.
- $\forall X . \mathrm{I}^{-}\left(\mathrm{I}_{0} X\right)=X$ follows.

Pairs

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

- $(X, Y):=\left\{\mathbf{I}_{0} x \mid x \in X\right\} \cup\left\{\mathbf{I}_{1} y \mid y \in Y\right\}$

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Pairs

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

- $(X, Y):=\left\{\mathbf{I}_{0} x \mid x \in X\right\} \cup\left\{\mathbf{I}_{1} y \mid y \in Y\right\}$
- $(0, Y)=\emptyset \cup\left\{\mathbf{I}_{1} y \mid y \in Y\right\}=\mathbf{I}_{0} Y$
- $(1, Y)=\left\{\mathbf{I}_{0} 0\right\} \cup\left\{\mathbf{I}_{1} y \mid y \in Y\right\}=\mathbf{I}_{1} Y$

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Pairs

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

- $(X, Y):=\left\{\mathbf{I}_{0} x \mid x \in X\right\} \cup\left\{I_{1} y \mid y \in Y\right\}$
- $(0, Y)=\emptyset \cup\left\{\mathbf{I}_{1} y \mid y \in Y\right\}=\mathbf{I}_{0} Y$
- $(1, Y)=\left\{\mathbf{I}_{0} 0\right\} \cup\left\{\mathbf{I}_{1} y \mid y \in Y\right\}=\mathbf{I}_{1} Y$
- $(0,0)=0$

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Functions

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown
Usual Graph Representation:

$$
\{(x, y) \mid y=F x\}
$$

Aczel Representation ("Trace" Representation, Lee-Werner):

$$
\{(x, y) \mid y \in F x\}
$$

Define $L: \iota(\iota \iota) \iota$ by

$$
\lambda X F . \bigcup_{x \in X}\{(x, y) \mid y \in F x\}
$$

Define A : ८८ by $\lambda f x .\{y \mid(x, y) \in f\}$

Outline

Higher-Order
Logic and Set
Theory:
Stronger
Together

Introduction

Brown

Introduction
Higher-Order Logic
Higher-Order Tarski-Grothendieck
Specification of Pairs and Functions

Implementation of Pairs and Functions

Many Fake Theorems

Conclusion

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

Introduction

- $\forall X F x y .(x, y) \in(\lambda x \in X . F x) \equiv x \in X \wedge y \in F x$

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

Introduction

- $\forall X F x y .(x, y) \in(\lambda x \in X . F x) \equiv x \in X \wedge y \in F x$
- $\forall f x y . y \in f x \equiv(x, y) \in f$

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

Introduction

- $\forall X F x y .(x, y) \in(\lambda x \in X . F x) \equiv x \in X \wedge y \in F x$
- $\forall f x y \cdot y \in f x \equiv(x, y) \in f$
- Beta: $\forall X F_{x . x} \in X \rightarrow\left(\lambda x \in X . F_{x}\right) x=F_{x}$
- $\forall X F_{x . x} \notin X \rightarrow(\lambda x \in X . F x) x=0$

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck

Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

Introduction

- $\forall X F x y .(x, y) \in(\lambda x \in X . F x) \equiv x \in X \wedge y \in F x$
- $\forall f x y \cdot y \in f x \equiv(x, y) \in f$
- Beta: $\forall X F_{x . x} \in X \rightarrow(\lambda x \in X . F x) x=F x$
- $\forall X F_{x . x} \notin X \rightarrow(\lambda x \in X . F x) x=0$
- $\forall F .(\lambda z \in 2 . F z)=(F 0, F 1)$

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

Introduction

- $\forall X F_{x y} .(x, y) \in(\lambda x \in X . F x) \equiv x \in X \wedge y \in F x$
- $\forall f x y . y \in f x \equiv(x, y) \in f$
- Beta: $\forall X F_{x . x} \in X \rightarrow\left(\lambda x \in X . F_{x}\right) x=F_{x}$
- $\forall X F_{x . x} \notin X \rightarrow(\lambda x \in X . F x) x=0$
- $\forall F .(\lambda z \in 2 . F z)=(F 0, F 1)$
- $\forall x y .(x, y) 0=x$ and $\forall x y .(x, y) 1=y$

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

Introduction

- $\forall X F x y .(x, y) \in(\lambda x \in X . F x) \equiv x \in X \wedge y \in F x$
- $\forall f x y . y \in f x \equiv(x, y) \in f$
- Beta: $\forall X F_{x . x} \in X \rightarrow(\lambda x \in X . F x) x=F x$
- $\forall X F_{x . x} \notin X \rightarrow(\lambda x \in X . F x) x=0$
- $\forall F .(\lambda z \in 2 . F z)=(F 0, F 1)$
- $\forall x y .(x, y) 0=x$ and $\forall x y .(x, y) 1=y$
- $\forall x y i . i \notin 2 \rightarrow(x, y) i=0$

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Sums and Products

- Define \mathbf{Q}^{Σ} to be \mathbf{L} since $\forall X F z$.

$$
z \in(\lambda x \in X . F x) \equiv \exists x \cdot x \in X \wedge \exists y \cdot y \in F x \wedge z=(x, y)
$$

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Sums and Products

- Define \mathbf{Q}^{Σ} to be \mathbf{L} since $\forall X F z$.

$$
z \in(\lambda x \in X . F x) \equiv \exists x \cdot x \in X \wedge \exists y \cdot y \in F x \wedge z=(x, y)
$$

- "Sigma is lambda." $\Sigma x \in$ s.t is $\lambda x \in$ s.t

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Sums and Products

- Define \mathbf{Q}^{Σ} to be \mathbf{L} since $\forall X F z$.

$$
z \in(\lambda x \in X . F x) \equiv \exists x \cdot x \in X \wedge \exists y \cdot y \in F x \wedge z=(x, y)
$$

- "Sigma is lambda." $\Sigma x \in$ s.t is $\lambda x \in$ s.t
- Define Q^{\square} to be

$$
\lambda X Y .\{f \in \wp(\Sigma x \in X . \bigcup(Y x)) \mid \forall x . x \in X \rightarrow f x \in Y x\}
$$

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Sums and Products

- Define \mathbf{Q}^{Σ} to be \mathbf{L} since $\forall X F z$.

$$
z \in(\lambda x \in X . F x) \equiv \exists x \cdot x \in X \wedge \exists y \cdot y \in F x \wedge z=(x, y)
$$

- "Sigma is lambda." $\Sigma x \in$ s.t is $\lambda x \in$ s.t
- Define $\mathbf{Q}^{п}$ to be

$$
\lambda X Y .\{f \in \wp(\Sigma x \in X . \bigcup(Y x)) \mid \forall x . x \in X \rightarrow f x \in Y x\}
$$

- $s \times t$ means Σx : s.t where x is not free in t.

Higher-Order Logic

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

- t^{s} means Πx : s.t where x is not free in t.

Sums and Products

- Define \mathbf{Q}^{Σ} to be \mathbf{L} since $\forall X F z$.

$$
z \in(\lambda x \in X . F x) \equiv \exists x \cdot x \in X \wedge \exists y \cdot y \in F x \wedge z=(x, y)
$$

- "Sigma is lambda." $\Sigma x \in$ s.t is $\lambda x \in$ s.t
- Define $\mathbf{Q}^{п}$ to be

$$
\lambda X Y .\{f \in \wp(\Sigma x \in X . \bigcup(Y x)) \mid \forall x . x \in X \rightarrow f x \in Y x\}
$$

- $s \times t$ means Σx : s.t where x is not free in t.

Higher-Order Logic

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

- t^{s} means Πx : s.t where x is not free in t.
- The properties mentioned earlier follow.
- In particular: $X \times X=X^{\{0,1\}}$.

Monotonicity Properties

- If $X \subseteq Y$ and $\forall x . x \in X \rightarrow Z x \subseteq W x$, then

$$
(\Sigma x \in X . Z x) \subseteq \Sigma y \in Y . W y .
$$

Introduction

Higher-Order
Logic

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Monotonicity Properties

- If $X \subseteq Y$ and $\forall x . x \in X \rightarrow Z x \subseteq W x$, then

$$
(\Sigma x \in X . Z x) \subseteq \Sigma y \in Y . W_{y}
$$

- If $X \subseteq W$ and $Y \subseteq Z$, then $(X, Y) \subseteq(W, Z)$.

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Monotonicity Properties

- If $X \subseteq Y$ and $\forall x . x \in X \rightarrow Z x \subseteq W x$, then

$$
(\Sigma x \in X . Z x) \subseteq \Sigma y \in Y . W y
$$

- If $X \subseteq W$ and $Y \subseteq Z$, then $(X, Y) \subseteq(W, Z)$.
- Codomain Covariance: If $\forall x . x \in X \rightarrow A x \subseteq B x$, then

$$
(\Pi x \in X . A x) \subseteq \Pi x \in X . B x .
$$

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Monotonicity Properties

- If $X \subseteq Y$ and $\forall x . x \in X \rightarrow Z x \subseteq W x$, then

$$
(\Sigma x \in X . Z x) \subseteq \Sigma y \in Y . W y
$$

- If $X \subseteq W$ and $Y \subseteq Z$, then $(X, Y) \subseteq(W, Z)$.
- Codomain Covariance: If $\forall x . x \in X \rightarrow A x \subseteq B x$, then

$$
(\Pi x \in X . A x) \subseteq \Pi x \in X . B x .
$$

- Domain Covariance: If $X \subseteq Y$ and $\forall y . y \in Y \rightarrow y \notin X \rightarrow 0 \in A y$, then

$$
(\Pi x \in X . A x) \subseteq \Pi y \in Y . A y
$$

Higher-Order

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and
Functions
Many Fake
Theorems
Conclusion

Monotonicity Properties

- If $X \subseteq Y$ and $\forall x . x \in X \rightarrow Z x \subseteq W x$, then

$$
(\Sigma x \in X . Z x) \subseteq \Sigma y \in Y . W y .
$$

- If $X \subseteq W$ and $Y \subseteq Z$, then $(X, Y) \subseteq(W, Z)$.
- Codomain Covariance: If $\forall x . x \in X \rightarrow A x \subseteq B x$, then

$$
(\Pi x \in X . A x) \subseteq \Pi x \in X . B x .
$$

- Domain Covariance: If $X \subseteq Y$ and $\forall y . y \in Y \rightarrow y \notin X \rightarrow 0 \in A y$, then

$$
(\Pi x \in X . A x) \subseteq \Pi y \in Y . A y
$$

- Combined Result: If $\forall x . x \in X \rightarrow A x \subseteq B x, X \subseteq Y$ and

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation of Pairs and
Functions
Many Fake
Theorems
Conclusion $\forall y . y \in Y \rightarrow y \notin X \rightarrow 0 \in B y$, then

$$
(\Pi x \in X . A x) \subseteq \Pi y \in Y . B y
$$

Monotonicity Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

- $A^{0}=\{\emptyset\}=1$
- If $0 \in A, n$ is a natural number and $m \in n$, then

$$
A^{m} \subseteq A^{n}
$$

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Monotonicity Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown

- $A^{0}=\{\emptyset\}=1$
- If $0 \in A, n$ is a natural number and $m \in n$, then

$$
A^{m} \subseteq A^{n}
$$

Introduction

Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Monotonicity Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

- $A^{0}=\{\emptyset\}=1$
- If $0 \in A, n$ is a natural number and $m \in n$, then

$$
A^{m} \subseteq A^{n}
$$

- If $0 \in A$, then

$$
1=A^{0} \subseteq A^{1} \subseteq A^{2} \subseteq A^{3} \subseteq A^{4} \subseteq \cdots
$$

Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Monotonicity Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

- $A^{0}=\{\emptyset\}=1$
- If $0 \in A, n$ is a natural number and $m \in n$, then

$$
A^{m} \subseteq A^{n}
$$

- If $0 \in A$, then

$$
1=A^{0} \subseteq A^{1} \subseteq A^{2} \subseteq A^{3} \subseteq A^{4} \subseteq \cdots
$$

- Don't get greedy: $A^{1} \neq A$.

Monotonicity Properties

Higher-Order
Logic and Set
Theory:
Stronger
Together
Brown

- $A^{0}=\{\emptyset\}=1$
- If $0 \in A, n$ is a natural number and $m \in n$, then

$$
A^{m} \subseteq A^{n}
$$

- If $0 \in A$, then

$$
1=A^{0} \subseteq A^{1} \subseteq A^{2} \subseteq A^{3} \subseteq A^{4} \subseteq \cdots
$$

- Don't get greedy: $A^{1} \neq A$.
- Embrace the fake theorems.

Outline

Higher-Order
Logic and Set
Theory: Stronger Together

Brown

Introduction
Higher-Order Logic
Higher-Order Tarski-Grothendieck
Specification of Pairs and Functions

Implementation of Pairs and Functions
Many Fake Theorems

Many Fake
Theorems
Conclusion
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions

Conclusion

Conclusion

Higher-Order
Logic and Set
Theory:
Stronger
Together

- Combining HOL with ZF allows us to state theorems generically, avoiding representation issues.
- Or...we can choose nonstandard representations, e.g.:
- Pairs and functions can be represented so that pairs are functions from 2
$X \times X=X^{2}$

Brown

Introduction
Higher-Order
Logic
Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Conclusion

- Combining HOL with ZF allows us to state theorems generically, avoiding representation issues.

Brown

Introduction
Higher-Order
Logic

- Or...we can choose nonstandard representations, e.g.:
- Pairs and functions can be represented so that pairs are functions from 2

$$
X \times X=X^{2}
$$

- ...and other "fake theorems" / surprising properties.

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation
of Pairs and
Functions
Many Fake
Theorems
Conclusion

Conclusion

- Combining HOL with ZF allows us to state theorems generically, avoiding representation issues.
- Or...we can choose nonstandard representations, e.g.:
- Pairs and functions can be represented so that pairs are functions from 2
- ...and other "fake theorems" / surprising properties.
- The representations may be more convenient for formalized mathematics than the usual Kuratowski pairs and "functions as graphs" representations.

Higher-Order
Tarski-
Grothendieck
Specification of
Pairs and
Functions
Implementation

Functions
Many Fake
Theorems
Conclusion

References

- Peter Aczel. The type theoretic interpretation of constructive set theory. 1978.
- Chad E. Brown. Reconsidering Pairs and Functions as Sets. 2015.
- Alonzo Church. A formulation of the simple theory of types. 1940.
- Grzegorz Bancerek. Algebra of morphisms. 1997, 2003.
- Mike Gordon. Set Theory, Higher Order Logic or Both? 1996
- Gyesik Lee, Benjamin Werner. Proof-irrelevant model of CC with predicative induction and judgmental equality. 2011.
- Anthony P. Morse. A Theory of Sets. 1965.
- Lawrence C. Paulson. Set theory for verification: I. from foundations to functions. 1993.
- Patrick Suppes. Axiomatic Set Theory. 1972.
- Zermelo. Über Grenzzahlen und Mengenbereiche. 1930.

