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Introduction

» Egal is a proof checker / interactive theorem prover for
higher-order set theory.

» Specifically: Higher-Order Tarski-Grothendieck (HOTG)
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Introduction

» Egal is a proof checker / interactive theorem prover for
higher-order set theory.

» Specifically: Higher-Order Tarski-Grothendieck (HOTG)

ZFCH-universes

» Why another prover?

>

de Bruijn criteria: proofs easily checked by small
independent proof checker

Quantifying over functions allows abstract statements
(avoiding “fake theorems”)

Most other libraries can be interpreted in HOTG, and so
could be ported to Egal.

Some of the interpretations exploit “fake theorems”
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Theorem Proving in Set Theory

» Trybulec, et. al.: Mizar 1973-now

>

vV vy VvVYyy

First-Order Tarski-Grothendieck

Scheme for Replacement

Interactive Theorem Prover / Proof Checker
Soft Typing System

Mathematical Input Style

> Quaife 1992 (JAR 1992)

vV vy VvVYyy

von Neumann-Gddel-Bernays (Class Theory)

First Order Finitely Axiomatizable (even as clauses)
Modification of Boyer, et. al. 1986 (JAR 1986)
Using Otter: Automated Theorem Prover
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Theorem Proving in Set Theory
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Trybulec, et. al.: Mizar 1973-now
» First-Order Tarski-Grothendieck
Scheme for Replacement
Interactive Theorem Prover / Proof Checker
Soft Typing System
Mathematical Input Style
Quaife 1992 (JAR 1992)

von Neumann-Gddel-Bernays (Class Theory)

First Order Finitely Axiomatizable (even as clauses)
Modification of Boyer, et. al. 1986 (JAR 1986)
Using Otter: Automated Theorem Prover

Isabelle-ZF (JAR 1996)
Metamath

vV vy VvVYyy

v VvYyy

v
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Two Kinds of Pairs in Mizar

> [x,y] : Kuratowski pair {{x},{x,y}}
» (x,y) : Function from {1,2} with 1 +— x,2 — y

Sometimes both are used.
Example: Definition in catalg 1:

func homsym(a,b) equals
[0,<xa,bx>];
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Two Kinds of Pairs in Mizar

> [x,y] : Kuratowski pair {{x},{x,y}}
» (x,y) : Function from {1,2} with 1 +— x,2 — y
Sometimes both are used.

Example: Definition in catalg 1:

func homsym(a,b) equals
[0,<xa,bx>];

» Fake Theorem: y € |J[x, y]
» Fake Theorem: [2,y] € (x, y)
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» Why not Kuratowski pairs?
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Quaife uses {{x}, {x, {y}}}
Why not Kuratowski pairs?

Kuratowski pairs made the theory inconsistent.
Let V be the class of all sets
Quaife simplified some of the Boyer, et. al., clauses

preferring (x,y) € V — ...overx e V,y € V — ...
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Quaife uses {{x}, {x, {y}}}
Why not Kuratowski pairs?

Kuratowski pairs made the theory inconsistent.

Let V be the class of all sets

Quaife simplified some of the Boyer, et. al., clauses
preferring (x,y) € V — ...overx e V,y € V — ...
Problem if a proper class is used in a pair.

Kuratowski pairs give (0, V) = (0, () leading to V € V
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Quaife's Pairs

v

Quaife uses {{x}, {x, {y}}}
Why not Kuratowski pairs?

Kuratowski pairs made the theory inconsistent.

Let V be the class of all sets

Quaife simplified some of the Boyer, et. al., clauses
preferring (x,y) € V — ...overx e V,y € V — ...
Problem if a proper class is used in a pair.

Kuratowski pairs give (0, V) = (0, () leading to V € V

Quaife's pairs satisfy the “fake theorem” that (x,y) is
never equal to an ordered pair of sets if either x or y is a
class.
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Fundamental Property of Pairing

» P is a “pairing operator” if it takes two sets and returns
a set such that

Vxyzw.Pxy=Pzw = x=z ANy=w

» If we have simple type theory over the set theory, we can
define this a higher-order pairing predicate:

AP Nxyzw. P xy=Pzw = x=z ANy=w
» A “real theorem” should work for any pairing:
VP.pairing P — ®[P]

» Sometimes we may want to prove ®[P] for a specific
pairing operator P and other times we may want the
general case.
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Higher-Order Logic (Quick Intro) Logie and Set

Theory:
Stronger
i Together
» Simple Type Theory (Church 1940) -
> . - base type

v

o - type of propositions

Higher-Order
Logic

v

oT - type of functions from o to 7

Typed Terms:
» ), - variables x of type o
» C, - constants ¢ of type o

» A, - terms of type o generated by
s, t = x|c|st|Ax.s|s — t|Vx.s

restricted to well-typed terms.

v

(Ax.s) has type o7 where x € V, and s € A
It means the function sending x to s.
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Higher—Order
s, t = x|c|st|A\x.s|s — t|Vx.s rosie

v

Formula - term of type o
Definable: A, Vv, =, =, 3, 3! (Russell-Prawitz)

» Sometimes write Ax : 0.5 and Vx : o.s.

v

» s~ t means s and t are Sn-convertible.




Natural Deduction s e
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I" ranges over finite sets of formulas.
Natural Deduction defines I |- s.

Higher-Order

Logic
MN+s
s known sel st
s MN=s M=t
ru{strt Nk-s—t s
[Fs—t M=t
I_I—s}’f F-Vx:o.s
y €V, fresh ———te A,

EVx:os Mk sf




Proof Terms

Add names to assumptions. I is uy : s1,..., U, : S,
Proof term calculus for judgment ' D : s
meaning “D is a proof of s under assumptions I'."

—— a: s known — u:sefl
lFa:s Nu:s
Fr-D:s
Dt
Fru{u:s}k-D:t IFD:s—t r=&:s

NE(Au:sD):s—t r(Me¢):t
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Higher-Order
PI’OO]C Terms Logic and Set
Theory:
Stronger
Together
Add names to assumptions. T is uy : S1,...,Up : Sp. e
Proof term calculus for judgment T D : s
meaning "D is a proof of s under assumptions I'." Higher-Order
Logic
r=Dj:s)
y € V, fresh

N=(Ax:0.D):Vx:os

=D :Vx:o0.s
Fr=(Dt):sf

tel,

» de Bruijn criteria: proofs easily checked by small
independent proof checker
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Higher-Order(ish) Set Theories

» lIsabelle-ZF: Paulson JAR 1993 (FO, but \'s)
» HOL with ZF: Gordon TPHOLs 1996
> Isabelle/HOLZF: Obua 2006

Why Higher-Order Tarski-Grothendieck?

» Mizar's MML can be translated into HOTG.
(Brown Pak CICM2019)

» HOL style libraries can be translated into HOTG.

» Dependent Type Theories (like Coq and Lean) can be
translated into HOTG.
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Set Theory Constants Logie and Set
Theory:
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Take ¢ to mean the type of sets.

> &, (00)o Choice Operator

> €:uo Membership [t
Grothendieck

> (e Empty Set

» U:w Big Unions

> o Power Sets

> rou(u) Replacement: {t|x € s} means r s (Ax.t)

> U w Universe Operator




. Higher-Order
AXIOmS Logic and Set
Theory:
Stronger
Together

Set of axioms:
Brown

» Choice for ¢, (scheme due to o)
» Propositional Extensionality
» Functional Extensionality (scheme)

. . Higher-Order
» Set Extensionality Tarski-

Grothendieck

» c-Induction

> Empty

» Union

> Power

» Replacement

» Universes
ND system with axioms is Henkin complete for HOTG.
Egal is a proof checker for the ND system with proof terms.




Relative Consistency

» Is HOTG too strong? Is it consistent?

» A standard model can be constructed given a
2-inaccessible cardinal (Brown Pak Kaliszyk ITP 2019)

» As large cardinals go, 2-inaccessible is not very large.
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If-then-else can be defined from «.

v

. . Higher-Ord
Unordered pairs {s, t} can be defined as Torski
Grothendieck

v

{if ) € X then selse t | X € p(ph)}

v

Singletons {s} are defined as {s, s}.

sUtis J{s, t}.

v




Natural Numbers as Finite Ordinals Higher-Order
Stremeer
» 0is (. Together
» sTissU{s}. Brown
» 1is 0T, 2is 1T,
» A predicate N : 10 for the natural numbers is definable
by higher-order quantification: Higher-Order

Grothendieck

An:e¥piopOA(Yxpx — p(x U {x})—pn

Theorem: Yn.N n — n € U}

v




Natural Numbers as Finite Ordinals Higher-Order
Stronger
> 0is (. Together
» sTissU{s}. Brown
» 1is0, 2is 1T, ...
» A predicate N : co for the natural numbers is definable
by higher-order quantification: Higher-Order

Grothendieck

An:e¥piopOA(Yxpx — p(x U {x})—pn

v

Theorem: Yn.N n — n € U}

Is this a fake theorem?

v
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0is .

stissU{s}.

lis0™, 2is 1™, ...

A predicate N : 1o for the natural numbers is definable
by higher-order quantification:

An:e¥piopOA(Yxpx — p(x U {x})—pn

Theorem: Yn.N n — n € U}
Is this a fake theorem?
“Real” abstract version:

Vz VS wuVn:.
(Vp:ropzA(Vxpx — p(Sx))—=pn)—neldd

Higher-Order
Logic and Set

Theory:
Stronger
Together

Brown

Higher-Order
Tarski-
Grothendieck




Natural Numbers as Finite Ordinals
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0is .

stissU{s}.

lis0™, 2is 1™, ...

A predicate N : 1o for the natural numbers is definable
by higher-order quantification:

An:e¥piopOA(Yxpx — p(x U {x})—pn

Theorem: Yn.N n — n € U}
Is this a fake theorem?

“Real” abstract version:

Vz VS wuVn:.
(Vp:ropzA(Vxpx — p(Sx))—=pn)—neldd

Abstract version is not a theorem. Specific is fake.
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Definition by Epsilon (Membership) Recursion

Functions from sets to sets can be defined by €-recursion.
Suppose ® : (1) satisfies

VXFG.(Vx.x € X — Fx = Gx) — ®XF = ¢XG.
Under this condition, ® defines a function R® satisfying
VX.ROX = dX(Ax.RPx)

Technique (JAR 2015):
> Define G® : w.o to be the least relation R such that if

Vx.x € X — Rx(Fx)

then RX(®XF).
» Prove G® is a total, functional relation.

» Use ¢ to define the function R® : ...
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Outline

Specification of Pairs and Functions
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Basic Properties Loche and Set
Theory:
» P (s, t) means Pst Togerer

> \V/XyWZ(X,y) = (W, Z) = X=WwW /\y = Z Brown
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Basic Properties Loche and Set
Theory:
» P (s, t) means Pst Togerer
> \V/XyWZ.(X, _y) = (W, Z) = X=WwW /\ y = Z Brown
» L:o(u)e Ax € s.t means Ls(\x.t)
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Pairs and
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Basic Properties

» P (s, t) means Pst
» Vxywz.(x,y) = (w,z) =x=wAy=12z

» L:o(u)e Ax € s.t means Ls(\x.t)
» VXFG.

(Vx.x € X = Fx = Gx) = (Ax € X.Fx) = Ax € X.Gx
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Basic Properties
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v

v
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v

P:uwe (s, t) means Pst
Vxywz.(x,y) = (w,z) =x=wAy =z

L:o(ee)e Ax € s.t means Ls(\x.t)
VXFG.

(Vx.x € X = Fx = Gx) = (Ax € X.Fx) = Ax € X.Gx
Q : () Y x € s.t means Q¥s(\x.t)
VXYz.z € (Ex € X.Yx) =

Ixxe XAJyyeYxNz=(x,y)
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P:uwe (s, t) means Pst
Vxywz.(x,y) = (w,z) =x=wAy =z

L:o(ee)e Ax € s.t means Ls(\x.t)
VXFG.

(Vx.x € X = Fx = Gx) = (Ax € X.Fx) = Ax € X.Gx
Q : () Y x € s.t means Q¥s(\x.t)
VXYz.z € (Ex € X.Yx) =

Ixxe XAJyyeYxNz=(x,y)

Q" () Mx € s.t means Q"s(\x.t)
VXYf.f € (Mx € X.Yx) =

JF.(Vxx e X — Fx € Yx) AN f = Ax € X.Fx
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Properties of Application

> A st means Ast when s, t: ¢
> Beta:

VXFx.x € X = (Ax € X.Fx)x = Fx
» A typing-like property:

VXYfx.f e (Mx e X.Yx) > xe X — fx e Yx
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Avoiding and Exploiting Fake Theorems

» Since we can quantify over higher types and the
specifications are propositions...

> a proposition can be stated without giving an
implementation of pairs, functions, etc.

» “For all pairing operators, for all lambda operators, etc.,
the property holds.”
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Avoiding and Exploiting Fake Theorems

» Since we can quantify over higher types and the
specifications are propositions...

> a proposition can be stated without giving an
implementation of pairs, functions, etc.

» “For all pairing operators, for all lambda operators, etc.,
the property holds.”

» Alternatively, we can prove a property using a specific
implementation satisfying nice properties.

» This specific, potentially “fake” theorem, may still be
useful to prove the abstract version.
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Logic and Set
Theory:
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Brown
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Translating from Dependent Type Theory

» Need representations of pairs, functions, dependent
sums, dependent products and more.

» Each Type universe can be interpreted as a
Grothendieck Universe U.

» Need to ensure that if X € U and Yx € U for x € X,
then Xx € X.Yx and Nx € X.Yx arein U.

> Are these “fake theorems'?
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Translating from Dependent Type Theory

» Need representations of pairs, functions, dependent
sums, dependent products and more.

» Each Type universe can be interpreted as a
Grothendieck Universe U.

» Need to ensure that if X € U and Yx € U for x € X,
then Xx € X.Yx and Nx € X.Yx arein U.

> Are these “fake theorems'?
> Yes, a bit fake.
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Translating from Dependent Type Theory

» Need representations of pairs, functions, dependent
sums, dependent products and more.

» Each Type universe can be interpreted as a
Grothendieck Universe U.

» Need to ensure that if X € U and Yx € U for x € X,
then Xx € X.Yx and Nx € X.Yx arein U.

» Are these “fake theorems'?
> Yes, a bit fake.
» The universe Prop can be taken as {0,1}, i.e. 2 or p(1).

» Need to ensure that if Yx € {0,1} for x € X, then
MNx e X.Yxis 0 or 1.

> |s this a “fake theorem?
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Translating from Dependent Type Theory

» Need representations of pairs, functions, dependent
sums, dependent products and more.

» Each Type universe can be interpreted as a
Grothendieck Universe U.

» Need to ensure that if X € U and Yx € U for x € X,
then Xx € X.Yx and Nx € X.Yx arein U.

» Are these “fake theorems'?
> Yes, a bit fake.
» The universe Prop can be taken as {0,1}, i.e. 2 or p(1).

» Need to ensure that if Yx € {0,1} for x € X, then
MNx e X.Yxis 0 or 1.

> |s this a “fake theorem?

» Yes. Not true for Graph representation of functions.

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown
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Extra “Fake” Properties

» ol is closed under I, for some .

VXY.(Vxx € X = Yx € pl) — (MNx € X.Yx) € pl

(This was Aczel's original motivation for his function
representation.)
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Extra “Fake” Properties

» ol is closed under I, for some .

VXY.(Vxx € X = Yx € pl) — (MNx € X.Yx) € pl

(This was Aczel's original motivation for his function
representation.)
» Functions applied outside their domain give 0:

VXFx.x ¢ X = (Ax € X.Fx)x =0
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Extra “Fake” Properties

» ol is closed under I, for some .

VXY.(Vxx € X = Yx € pl) — (MNx € X.Yx) € pl

(This was Aczel's original motivation for his function
representation.)
» Functions applied outside their domain give 0:

VXFx.x ¢ X = (Ax € X.Fx)x =0
» Pairs are functions with domain 2:

VF.(Ax € 2.Fx) = (FO0, F1)
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Extra “Fake” Properties

» ol is closed under I, for some .

VXY.(Vxx € X = Yx € pl) — (MNx € X.Yx) € pl

(This was Aczel's original motivation for his function
representation.)
» Functions applied outside their domain give 0:

VXFx.x ¢ X = (Ax € X.Fx)x =0
» Pairs are functions with domain 2:
VF.(Ax € 2.Fx) = (FO0, F1)
» ol is closed under L.

VXX € pl - VY. (Vxx e X — Yx € pl)
— (Ex € X.¥x) € pl

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown
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Consequences

The following are provable from the previous properties:

> VXX x X = X?

> Vxy.(x,y)0 = x

> Vxy.(x,y)l=y

that is, VX.(Xx € X.X) =Tx € 2.X

Higher-Order
Logic and Set
Theory:
Stronger
Together

Brown
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Implementation of Pairs and Functions
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Pairs as Disjoint Sums

> Idea: (X,Y)is {(0,x)|x € X}U{(1,y)ly € Y}

» Morse considered using disjoint sums for “class-level”
pairs in 1965, but ultimately used a different
implementation.
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Pairs as Disjoint Sums

> Idea: (X,Y)is {(0,x)|x € X}U{(1,y)ly € Y}

» Morse considered using disjoint sums for “class-level
pairs in 1965, but ultimately used a different
implementation.

» Problem: What are (0,x) and (1,y)?
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Pairs as Disjoint Sums

v

v

v

v

Idea: (X,Y)is {(0,x)[x € X}U{(1,y)ly € Y}

Morse considered using disjoint sums for “class-level”
pairs in 1965, but ultimately used a different
implementation.

Problem: What are (0, x) and (1, y)?

We could use Kuratowski pairs inside the definition, but
let's just have one kind of pair.
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Pairs as Disjoint Sums

v

Idea: (X,Y)is {(0,x)[x € X}U{(1,y)ly € Y}

Morse considered using disjoint sums for “class-level”
pairs in 1965, but ultimately used a different
implementation.

Problem: What are (0, x) and (1, y)?

We could use Kuratowski pairs inside the definition, but
let's just have one kind of pair.

Solution: First define lg : ¢t and 1 : ¢« so that later
lox = (0,x) and liy = (1, y).
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Idea: (X,Y)is {(0,x)[x € X}U{(1,y)ly € Y}

Morse considered using disjoint sums for “class-level”
pairs in 1965, but ultimately used a different
implementation.

Problem: What are (0, x) and (1, y)?

We could use Kuratowski pairs inside the definition, but
let's just have one kind of pair.

Solution: First define lg : ¢t and 1 : ¢« so that later

lox = (0,x) and liy = (1, y).

Then: (X,Y) = {lox|x € X} U {ly|ly € Y}
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Define I; by e-recursion:
I1.X = {0} U{lix|x € X}

Define lg : v by AX {lix|x € X}.
Easy: VXY.IgX #11Y and 10 = 0.
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Define I; by e-recursion:
I1.X = {0} U{lix|x € X}

Define lg : v by AX {lix|x € X}.
Easy: VXY.IgX #11Y and 10 = 0.

Define a one-sided inverse |~ : 1 recursively:
X ={I"x|x € X\ {0}}

VX1~ (11X) = X by €-induction.
VX1~ (1oX) = X follows.
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» (X,Y) :={lox|x e X} U{lhyly € Y}

> (0,Y)=0U{hyly € Y} =1Y

> (L,Y) = {l0} U{liyly € Y} = LY
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(X,Y) :={lox|x e X} U{lyly € Y}

0,Y)=0U{lhylye Y} =1lY

(1,Y) = {10} U{liyly € Y} =Y

(0,0)=0
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Usual Graph Representation:

{6 y)ly = Fx}

Aczel Representation (“Trace” Representation, Lee-Werner):

{66 y)ly € Fx}

Deﬁne L . L(LL)L by Implementation

of Pairs and
Functions

AXF. | J{(x,y)ly € Fx}
xeX

Define A : v by Ax.{y|(x,y) € f}
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VXFxy.(x,y) € (Ax € X.Fx) =x € X ANy € Fx
Vixy.y € ix = (x,y) € f

Beta: VXFx.x € X — (Ax € X.Fx)x = Fx
VXFx.x ¢ X — (Ax € X.Fx)x =0

VF.(\z € 2.Fz) = (FO, F1)

Vxy.(x,y)0 = x and ¥xy.(x,y)l =y
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VX_yII ¢ 2 — (X,y)l = O Many Fake
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» Define Q™ to be L since VXFz.

ze(MeX.Fx)=3xxeXANTyy e FxNz=(x,y)

» “Sigma is lambda.” ¥x € s.tis Ax € s.t

» Define Q" to be

AXY {f € p(Ex € X.| J(¥x))|Vx.x € X — fx € Yx}
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» Define Q* to be L since VXFz. Together

Brown

ze(MeX.Fx)=3xxeXANTyy e FxNz=(x,y)

» “Sigma is lambda.” ¥x € s.tis Ax € s.t

» Define Q" to be

AXY {f € p(Ex € X.|J(¥)[Vxx € X = e Yx} (-

Theorems
> s X t means Xx : s.t where x is not free in t.
» t° means lx : s.t where x is not free in t.
» The properties mentioned earlier follow.
» In particular: X x X = X{0:1},
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Monotonicity Properties Logie and Sex
Theory:
» If X C Y and Vx.x € X — Zx C Wk, then %:e[ﬁ:

Brown

(Ix e X.Zx) C Xy € Y.Wy.

v

If X C W and Y C Z, then (X,Y) C (W, 2).
Codomain Covariance: If Vx.x € X — Ax C Bx, then

v

(Mx € X.Ax) C MNx € X.Bx.

v

Domain Covariance: If X C Y and
VyyeY —y¢ X —0¢c Ay, then

(MNx € X.Ax) C Iy € Y.Ay

Many Fake
Theorems

v

Combined Result: If Vx.x € X — Ax C Bx, X C Y and
Vy.yeY —y¢& X —0¢€ By, then

(Mx € X.Ax) C Iy € Y.By
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» If 0 € A, nis a natural number and m € n, then

Am g An
» If 0 € A, then
1=ACCA'CA2C A CAC...
» Don't get greedy: Al £ A. Many Fake
» Embrace the fake theorems.
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» Combining HOL with ZF allows us to state theorems
generically, avoiding representation issues.

» Or...we can choose nonstandard representations, e.g.:

» Pairs and functions can be represented so that pairs are
functions from 2 X x X =X?

» ...and other "“fake theorems” / surprising properties.
» The representations may be more convenient for

formalized mathematics than the usual Kuratowski pairs
and “functions as graphs” representations.

Conclusion
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