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Introduction

◮ Egal is a proof checker / interactive theorem prover for
higher-order set theory.

◮ Specifically: Higher-Order Tarski-Grothendieck (HOTG)
ZFC+universes



Higher-Order
Logic and Set

Theory:
Stronger
Together

Brown

Introduction

Higher-Order
Logic

Higher-Order
Tarski-
Grothendieck

Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions

Many Fake
Theorems

Conclusion

Introduction

◮ Egal is a proof checker / interactive theorem prover for
higher-order set theory.

◮ Specifically: Higher-Order Tarski-Grothendieck (HOTG)
ZFC+universes

◮ Why another prover?
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Introduction

◮ Egal is a proof checker / interactive theorem prover for
higher-order set theory.

◮ Specifically: Higher-Order Tarski-Grothendieck (HOTG)
ZFC+universes

◮ Why another prover?

◮ de Bruijn criteria: proofs easily checked by small
independent proof checker
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Introduction

◮ Egal is a proof checker / interactive theorem prover for
higher-order set theory.

◮ Specifically: Higher-Order Tarski-Grothendieck (HOTG)
ZFC+universes

◮ Why another prover?

◮ de Bruijn criteria: proofs easily checked by small
independent proof checker

◮ Quantifying over functions allows abstract statements
(avoiding “fake theorems”)
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Introduction

◮ Egal is a proof checker / interactive theorem prover for
higher-order set theory.

◮ Specifically: Higher-Order Tarski-Grothendieck (HOTG)
ZFC+universes

◮ Why another prover?

◮ de Bruijn criteria: proofs easily checked by small
independent proof checker

◮ Quantifying over functions allows abstract statements
(avoiding “fake theorems”)

◮ Most other libraries can be interpreted in HOTG, and so
could be ported to Egal.
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Introduction

◮ Egal is a proof checker / interactive theorem prover for
higher-order set theory.

◮ Specifically: Higher-Order Tarski-Grothendieck (HOTG)
ZFC+universes

◮ Why another prover?

◮ de Bruijn criteria: proofs easily checked by small
independent proof checker

◮ Quantifying over functions allows abstract statements
(avoiding “fake theorems”)

◮ Most other libraries can be interpreted in HOTG, and so
could be ported to Egal.

◮ Some of the interpretations exploit “fake theorems”
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Theorem Proving in Set Theory

◮ Trybulec, et. al.: Mizar 1973-now
◮ First-Order Tarski-Grothendieck
◮ Scheme for Replacement
◮ Interactive Theorem Prover / Proof Checker
◮ Soft Typing System
◮ Mathematical Input Style

◮ Quaife 1992 (JAR 1992)
◮ von Neumann-Gödel-Bernays (Class Theory)
◮ First Order Finitely Axiomatizable (even as clauses)
◮ Modification of Boyer, et. al. 1986 (JAR 1986)
◮ Using Otter: Automated Theorem Prover
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Theorem Proving in Set Theory

◮ Trybulec, et. al.: Mizar 1973-now
◮ First-Order Tarski-Grothendieck
◮ Scheme for Replacement
◮ Interactive Theorem Prover / Proof Checker
◮ Soft Typing System
◮ Mathematical Input Style

◮ Quaife 1992 (JAR 1992)
◮ von Neumann-Gödel-Bernays (Class Theory)
◮ First Order Finitely Axiomatizable (even as clauses)
◮ Modification of Boyer, et. al. 1986 (JAR 1986)
◮ Using Otter: Automated Theorem Prover

◮ Isabelle-ZF (JAR 1996)

◮ Metamath
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Two Kinds of Pairs in Mizar

◮ [x , y ] : Kuratowski pair {{x}, {x , y}}

◮ 〈x , y〉 : Function from {1, 2} with 1 7→ x , 2 7→ y

Sometimes both are used.
Example: Definition in catalg_1:
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Two Kinds of Pairs in Mizar

◮ [x , y ] : Kuratowski pair {{x}, {x , y}}

◮ 〈x , y〉 : Function from {1, 2} with 1 7→ x , 2 7→ y

Sometimes both are used.
Example: Definition in catalg_1:

◮ Fake Theorem: y ∈
⋃
[x , y ]
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Two Kinds of Pairs in Mizar

◮ [x , y ] : Kuratowski pair {{x}, {x , y}}

◮ 〈x , y〉 : Function from {1, 2} with 1 7→ x , 2 7→ y

Sometimes both are used.
Example: Definition in catalg_1:

◮ Fake Theorem: y ∈
⋃
[x , y ]

◮ Fake Theorem: [2, y ] ∈ 〈x , y〉



Higher-Order
Logic and Set

Theory:
Stronger
Together

Brown

Introduction

Higher-Order
Logic

Higher-Order
Tarski-
Grothendieck

Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions

Many Fake
Theorems

Conclusion

Quaife’s Pairs

◮ Quaife uses {{x}, {x , {y}}}

◮ Why not Kuratowski pairs?
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Quaife’s Pairs

◮ Quaife uses {{x}, {x , {y}}}

◮ Why not Kuratowski pairs?

◮ Kuratowski pairs made the theory inconsistent.
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Quaife’s Pairs

◮ Quaife uses {{x}, {x , {y}}}

◮ Why not Kuratowski pairs?

◮ Kuratowski pairs made the theory inconsistent.

◮ Let V be the class of all sets

◮ Quaife simplified some of the Boyer, et. al., clauses

◮ preferring (x , y) ∈ V → ... over x ∈ V , y ∈ V → ....
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Quaife’s Pairs

◮ Quaife uses {{x}, {x , {y}}}

◮ Why not Kuratowski pairs?

◮ Kuratowski pairs made the theory inconsistent.

◮ Let V be the class of all sets

◮ Quaife simplified some of the Boyer, et. al., clauses

◮ preferring (x , y) ∈ V → ... over x ∈ V , y ∈ V → ....

◮ Problem if a proper class is used in a pair.

◮ Kuratowski pairs give (∅,V ) = (∅, ∅) leading to V ∈ V
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Quaife’s Pairs

◮ Quaife uses {{x}, {x , {y}}}

◮ Why not Kuratowski pairs?

◮ Kuratowski pairs made the theory inconsistent.

◮ Let V be the class of all sets

◮ Quaife simplified some of the Boyer, et. al., clauses

◮ preferring (x , y) ∈ V → ... over x ∈ V , y ∈ V → ....

◮ Problem if a proper class is used in a pair.

◮ Kuratowski pairs give (∅,V ) = (∅, ∅) leading to V ∈ V

◮ Quaife’s pairs satisfy the “fake theorem” that (x , y) is
never equal to an ordered pair of sets if either x or y is a
class.
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Fundamental Property of Pairing

◮ P is a “pairing operator” if it takes two sets and returns
a set such that

∀xyzw .P x y = P z w ≡ x = z ∧ y = w

◮ If we have simple type theory over the set theory, we can
define this a higher-order pairing predicate:

λP : ιιι.∀xyzw .P x y = P z w ≡ x = z ∧ y = w

◮ A “real theorem” should work for any pairing:

∀P .pairing P → Φ[P]

◮ Sometimes we may want to prove Φ[P] for a specific
pairing operator P and other times we may want the
general case.
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Higher-Order Logic (Quick Intro)

◮ Simple Type Theory (Church 1940)

◮ ι - base type

◮ o - type of propositions

◮ στ - type of functions from σ to τ

Typed Terms:

◮ Vσ - variables x of type σ

◮ Cσ - constants c of type σ

◮ Λσ - terms of type σ generated by

s, t ::= x |c |st|λx .s|s → t|∀x .s

restricted to well-typed terms.

◮ (λx .s) has type στ where x ∈ Vσ and s ∈ Λτ .
It means the function sending x to s.
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Higher-Order Logic (Quick Intro)

s, t ::= x |c |st|λx .s|s → t|∀x .s

◮ Formula - term of type o

◮ Definable: ∧, ∨, ≡, =, ∃, ∃! (Russell-Prawitz)

◮ Sometimes write λx : σ.s and ∀x : σ.s.

◮ s ≈ t means s and t are βη-convertible.
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Natural Deduction

Γ ranges over finite sets of formulas.
Natural Deduction defines Γ ⊢ s.

Γ ⊢ s
s known

Γ ⊢ s
s ∈ Γ

Γ ⊢ s

Γ ⊢ t
s ≈ t

Γ ∪ {s} ⊢ t

Γ ⊢ s → t

Γ ⊢ s → t Γ ⊢ s

Γ ⊢ t

Γ ⊢ sxy

Γ ⊢ ∀x : σ.s
y ∈ Vσ fresh

Γ ⊢ ∀x : σ.s

Γ ⊢ sxt
t ∈ Λσ
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Proof Terms

Add names to assumptions. Γ is u1 : s1, . . . , un : sn.
Proof term calculus for judgment Γ ⊢ D : s
meaning “D is a proof of s under assumptions Γ.”

Γ ⊢ a : s
a : s known

Γ ⊢ u : s
u : s ∈ Γ

Γ ⊢ D : s

Γ ⊢ D : t
s ≈ t

Γ ∪ {u : s} ⊢ D : t

Γ ⊢ (λu : s.D) : s → t

Γ ⊢ D : s → t Γ ⊢ E : s

Γ ⊢ (D E) : t
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Proof Terms

Add names to assumptions. Γ is u1 : s1, . . . , un : sn.
Proof term calculus for judgment Γ ⊢ D : s
meaning “D is a proof of s under assumptions Γ.”

Γ ⊢ Dx
y : sxy

Γ ⊢ (λx : σ.D) : ∀x : σ.s
y ∈ Vσ fresh

Γ ⊢ D : ∀x : σ.s

Γ ⊢ (D t) : sxt
t ∈ Λσ

◮ de Bruijn criteria: proofs easily checked by small
independent proof checker
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Higher-Order(ish) Set Theories

◮ Isabelle-ZF: Paulson JAR 1993 (FO, but λ’s)

◮ HOL with ZF: Gordon TPHOLs 1996

◮ Isabelle/HOLZF: Obua 2006

Why Higher-Order Tarski-Grothendieck?

◮ Mizar’s MML can be translated into HOTG.
(Brown Pąk CICM2019)

◮ HOL style libraries can be translated into HOTG.

◮ Dependent Type Theories (like Coq and Lean) can be
translated into HOTG.
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Set Theory Constants

Take ι to mean the type of sets.

◮ εσ : (σo)σ Choice Operator

◮ ∈ : ιιo Membership

◮ ∅ : ι Empty Set

◮

⋃
: ιι Big Unions

◮ ℘ : ιι Power Sets

◮ r : ι(ιι)ι Replacement: {t|x ∈ s} means r s (λx .t)

◮ U : ιι Universe Operator
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Axioms

Set of axioms:

◮ Choice for εσ (scheme due to σ)

◮ Propositional Extensionality

◮ Functional Extensionality (scheme)

◮ Set Extensionality

◮ ∈-Induction

◮ Empty

◮ Union

◮ Power

◮ Replacement

◮ Universes

ND system with axioms is Henkin complete for HOTG.
Egal is a proof checker for the ND system with proof terms.
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Relative Consistency

◮ Is HOTG too strong? Is it consistent?

◮ A standard model can be constructed given a
2-inaccessible cardinal (Brown Pąk Kaliszyk ITP 2019)

◮ As large cardinals go, 2-inaccessible is not very large.
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Basic Definitions

◮ If-then-else can be defined from ε.

◮ Unordered pairs {s, t} can be defined as

{if ∅ ∈ X then s else t | X ∈ ℘(℘∅)}

◮ Singletons {s} are defined as {s, s}.

◮ s ∪ t is
⋃
{s, t}.
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Natural Numbers as Finite Ordinals

◮ 0 is ∅.

◮ s+ is s ∪ {s}.

◮ 1 is 0+, 2 is 1+, . . .

◮ A predicate N : ιo for the natural numbers is definable
by higher-order quantification:

λn : ι.∀p : ιo.p 0 ∧ (∀x .p x → p (x ∪ {x})) → p n

◮ Theorem: ∀n.N n → n ∈ U∅
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Natural Numbers as Finite Ordinals

◮ 0 is ∅.

◮ s+ is s ∪ {s}.

◮ 1 is 0+, 2 is 1+, . . .

◮ A predicate N : ιo for the natural numbers is definable
by higher-order quantification:

λn : ι.∀p : ιo.p 0 ∧ (∀x .p x → p (x ∪ {x})) → p n

◮ Theorem: ∀n.N n → n ∈ U∅

◮ Is this a fake theorem?
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Natural Numbers as Finite Ordinals

◮ 0 is ∅.

◮ s+ is s ∪ {s}.

◮ 1 is 0+, 2 is 1+, . . .

◮ A predicate N : ιo for the natural numbers is definable
by higher-order quantification:

λn : ι.∀p : ιo.p 0 ∧ (∀x .p x → p (x ∪ {x})) → p n

◮ Theorem: ∀n.N n → n ∈ U∅

◮ Is this a fake theorem?

◮ “Real” abstract version:

∀z : ι.∀S : ιι.∀n : ι.
(∀p : ιo.p z ∧ (∀x .p x → p (S x)) → p n) → n ∈ U∅
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Natural Numbers as Finite Ordinals

◮ 0 is ∅.

◮ s+ is s ∪ {s}.

◮ 1 is 0+, 2 is 1+, . . .

◮ A predicate N : ιo for the natural numbers is definable
by higher-order quantification:

λn : ι.∀p : ιo.p 0 ∧ (∀x .p x → p (x ∪ {x})) → p n

◮ Theorem: ∀n.N n → n ∈ U∅

◮ Is this a fake theorem?

◮ “Real” abstract version:

∀z : ι.∀S : ιι.∀n : ι.
(∀p : ιo.p z ∧ (∀x .p x → p (S x)) → p n) → n ∈ U∅

◮ Abstract version is not a theorem. Specific is fake.



Higher-Order
Logic and Set

Theory:
Stronger
Together

Brown

Introduction

Higher-Order
Logic

Higher-Order
Tarski-
Grothendieck

Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions

Many Fake
Theorems

Conclusion

Definition by Epsilon (Membership) Recursion

Functions from sets to sets can be defined by ∈-recursion.
Suppose Φ : ι(ιι)ι satisfies

∀XFG .(∀x .x ∈ X → Fx = Gx) → ΦXF = ΦXG .

Under this condition, Φ defines a function RΦ satisfying

∀X .RΦX = ΦX (λx .RΦx)

Technique (JAR 2015):

◮ Define GΦ : ιιo to be the least relation R such that if

∀x .x ∈ X → Rx(Fx)

then RX (ΦXF ).

◮ Prove GΦ is a total, functional relation.

◮ Use ε to define the function RΦ : ιι.
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Basic Properties

◮ P : ιιι (s, t) means Pst

◮ ∀xywz .(x , y) = (w , z) ≡ x = w ∧ y = z
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Basic Properties

◮ P : ιιι (s, t) means Pst

◮ ∀xywz .(x , y) = (w , z) ≡ x = w ∧ y = z

◮ L : ι(ιι)ι λx ∈ s.t means Ls(λx .t)
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◮ P : ιιι (s, t) means Pst

◮ ∀xywz .(x , y) = (w , z) ≡ x = w ∧ y = z

◮ L : ι(ιι)ι λx ∈ s.t means Ls(λx .t)

◮ ∀XFG .

(∀x .x ∈ X → Fx = Gx) ≡ (λx ∈ X .Fx) = λx ∈ X .Gx
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Basic Properties

◮ P : ιιι (s, t) means Pst

◮ ∀xywz .(x , y) = (w , z) ≡ x = w ∧ y = z

◮ L : ι(ιι)ι λx ∈ s.t means Ls(λx .t)

◮ ∀XFG .

(∀x .x ∈ X → Fx = Gx) ≡ (λx ∈ X .Fx) = λx ∈ X .Gx

◮ QΣ : ι(ιι)ι Σx ∈ s.t means QΣs(λx .t)

◮ ∀XYz .z ∈ (Σx ∈ X .Yx) ≡

∃x .x ∈ X ∧ ∃y .y ∈ Yx ∧ z = (x , y)
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Basic Properties

◮ P : ιιι (s, t) means Pst

◮ ∀xywz .(x , y) = (w , z) ≡ x = w ∧ y = z

◮ L : ι(ιι)ι λx ∈ s.t means Ls(λx .t)

◮ ∀XFG .

(∀x .x ∈ X → Fx = Gx) ≡ (λx ∈ X .Fx) = λx ∈ X .Gx

◮ QΣ : ι(ιι)ι Σx ∈ s.t means QΣs(λx .t)

◮ ∀XYz .z ∈ (Σx ∈ X .Yx) ≡

∃x .x ∈ X ∧ ∃y .y ∈ Yx ∧ z = (x , y)

◮ QΠ : ι(ιι)ι Πx ∈ s.t means QΠs(λx .t)

◮ ∀XYf .f ∈ (Πx ∈ X .Yx) ≡

∃F .(∀x .x ∈ X → Fx ∈ Yx) ∧ f = λx ∈ X .Fx
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Properties of Application

◮ A : ιιι st means Ast when s, t : ι

◮ Beta:

∀XFx .x ∈ X → (λx ∈ X .Fx)x = Fx

◮ A typing-like property:

∀XYfx .f ∈ (Πx ∈ X .Yx) → x ∈ X → fx ∈ Yx
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Avoiding and Exploiting Fake Theorems

◮ Since we can quantify over higher types and the
specifications are propositions...

◮ a proposition can be stated without giving an
implementation of pairs, functions, etc.

◮ “For all pairing operators, for all lambda operators, etc.,
the property holds.”
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Avoiding and Exploiting Fake Theorems

◮ Since we can quantify over higher types and the
specifications are propositions...

◮ a proposition can be stated without giving an
implementation of pairs, functions, etc.

◮ “For all pairing operators, for all lambda operators, etc.,
the property holds.”

◮ Alternatively, we can prove a property using a specific
implementation satisfying nice properties.

◮ This specific, potentially “fake” theorem, may still be
useful to prove the abstract version.
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Translating from Dependent Type Theory

◮ Need representations of pairs, functions, dependent
sums, dependent products and more.

◮ Each Type universe can be interpreted as a
Grothendieck Universe U.

◮ Need to ensure that if X ∈ U and Yx ∈ U for x ∈ X ,
then Σx ∈ X .Yx and Πx ∈ X .Yx are in U.

◮ Are these “fake theorems”?
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Translating from Dependent Type Theory

◮ Need representations of pairs, functions, dependent
sums, dependent products and more.

◮ Each Type universe can be interpreted as a
Grothendieck Universe U.

◮ Need to ensure that if X ∈ U and Yx ∈ U for x ∈ X ,
then Σx ∈ X .Yx and Πx ∈ X .Yx are in U.

◮ Are these “fake theorems”?

◮ Yes, a bit fake.
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Translating from Dependent Type Theory

◮ Need representations of pairs, functions, dependent
sums, dependent products and more.

◮ Each Type universe can be interpreted as a
Grothendieck Universe U.

◮ Need to ensure that if X ∈ U and Yx ∈ U for x ∈ X ,
then Σx ∈ X .Yx and Πx ∈ X .Yx are in U.

◮ Are these “fake theorems”?

◮ Yes, a bit fake.

◮ The universe Prop can be taken as {0, 1}, i.e. 2 or ℘(1).

◮ Need to ensure that if Yx ∈ {0, 1} for x ∈ X , then
Πx ∈ X .Yx is 0 or 1.

◮ Is this a “fake theorem”?
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Translating from Dependent Type Theory

◮ Need representations of pairs, functions, dependent
sums, dependent products and more.

◮ Each Type universe can be interpreted as a
Grothendieck Universe U.

◮ Need to ensure that if X ∈ U and Yx ∈ U for x ∈ X ,
then Σx ∈ X .Yx and Πx ∈ X .Yx are in U.

◮ Are these “fake theorems”?

◮ Yes, a bit fake.

◮ The universe Prop can be taken as {0, 1}, i.e. 2 or ℘(1).

◮ Need to ensure that if Yx ∈ {0, 1} for x ∈ X , then
Πx ∈ X .Yx is 0 or 1.

◮ Is this a “fake theorem”?

◮ Yes. Not true for Graph representation of functions.
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Extra “Fake” Properties
◮ ℘1 is closed under Π, for some Π.

∀XY .(∀x .x ∈ X → Yx ∈ ℘1) → (Πx ∈ X .Yx) ∈ ℘1

(This was Aczel’s original motivation for his function
representation.)
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Extra “Fake” Properties
◮ ℘1 is closed under Π, for some Π.

∀XY .(∀x .x ∈ X → Yx ∈ ℘1) → (Πx ∈ X .Yx) ∈ ℘1

(This was Aczel’s original motivation for his function
representation.)

◮ Functions applied outside their domain give 0:

∀XFx .x /∈ X → (λx ∈ X .Fx)x = 0
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Extra “Fake” Properties
◮ ℘1 is closed under Π, for some Π.

∀XY .(∀x .x ∈ X → Yx ∈ ℘1) → (Πx ∈ X .Yx) ∈ ℘1

(This was Aczel’s original motivation for his function
representation.)

◮ Functions applied outside their domain give 0:

∀XFx .x /∈ X → (λx ∈ X .Fx)x = 0

◮ Pairs are functions with domain 2:

∀F .(λx ∈ 2.Fx) = (F0,F1)
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Extra “Fake” Properties
◮ ℘1 is closed under Π, for some Π.

∀XY .(∀x .x ∈ X → Yx ∈ ℘1) → (Πx ∈ X .Yx) ∈ ℘1

(This was Aczel’s original motivation for his function
representation.)

◮ Functions applied outside their domain give 0:

∀XFx .x /∈ X → (λx ∈ X .Fx)x = 0

◮ Pairs are functions with domain 2:

∀F .(λx ∈ 2.Fx) = (F0,F1)

◮ ℘1 is closed under Σ.

∀X .X ∈ ℘1 → ∀Y .(∀x .x ∈ X → Yx ∈ ℘1)

→ (Σx ∈ X .Yx) ∈ ℘1
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Consequences

The following are provable from the previous properties:

◮ ∀X .X × X = X 2

that is, ∀X .(Σx ∈ X .X ) = Πx ∈ 2.X

◮ ∀xy .(x , y)0 = x

◮ ∀xy .(x , y)1 = y
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Pairs as Disjoint Sums

◮ Idea: (X ,Y ) is {(0, x)|x ∈ X} ∪ {(1, y)|y ∈ Y }

◮ Morse considered using disjoint sums for “class-level”
pairs in 1965, but ultimately used a different
implementation.
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Pairs as Disjoint Sums

◮ Idea: (X ,Y ) is {(0, x)|x ∈ X} ∪ {(1, y)|y ∈ Y }

◮ Morse considered using disjoint sums for “class-level”
pairs in 1965, but ultimately used a different
implementation.

◮ Problem: What are (0, x) and (1, y)?
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Pairs as Disjoint Sums

◮ Idea: (X ,Y ) is {(0, x)|x ∈ X} ∪ {(1, y)|y ∈ Y }

◮ Morse considered using disjoint sums for “class-level”
pairs in 1965, but ultimately used a different
implementation.

◮ Problem: What are (0, x) and (1, y)?

◮ We could use Kuratowski pairs inside the definition, but
let’s just have one kind of pair.
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Pairs as Disjoint Sums

◮ Idea: (X ,Y ) is {(0, x)|x ∈ X} ∪ {(1, y)|y ∈ Y }

◮ Morse considered using disjoint sums for “class-level”
pairs in 1965, but ultimately used a different
implementation.

◮ Problem: What are (0, x) and (1, y)?

◮ We could use Kuratowski pairs inside the definition, but
let’s just have one kind of pair.

◮ Solution: First define I0 : ιι and I1 : ιι so that later
I0x = (0, x) and I1y = (1, y).
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Pairs as Disjoint Sums

◮ Idea: (X ,Y ) is {(0, x)|x ∈ X} ∪ {(1, y)|y ∈ Y }

◮ Morse considered using disjoint sums for “class-level”
pairs in 1965, but ultimately used a different
implementation.

◮ Problem: What are (0, x) and (1, y)?

◮ We could use Kuratowski pairs inside the definition, but
let’s just have one kind of pair.

◮ Solution: First define I0 : ιι and I1 : ιι so that later
I0x = (0, x) and I1y = (1, y).

◮ Then: (X ,Y ) := {I0x |x ∈ X} ∪ {I1y |y ∈ Y }
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Pairs as Disjoint Sums

◮ Define I1 by ∈-recursion:

I1X = {0} ∪ {I1x |x ∈ X}
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Pairs as Disjoint Sums

◮ Define I1 by ∈-recursion:

I1X = {0} ∪ {I1x |x ∈ X}

◮ Define I0 : ιι by λX .{I1x |x ∈ X}.
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Pairs as Disjoint Sums

◮ Define I1 by ∈-recursion:

I1X = {0} ∪ {I1x |x ∈ X}

◮ Define I0 : ιι by λX .{I1x |x ∈ X}.

◮ Easy: ∀XY .I0X 6= I1Y and I00 = 0.



Higher-Order
Logic and Set

Theory:
Stronger
Together

Brown

Introduction

Higher-Order
Logic

Higher-Order
Tarski-
Grothendieck

Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions

Many Fake
Theorems

Conclusion

Pairs as Disjoint Sums

◮ Define I1 by ∈-recursion:

I1X = {0} ∪ {I1x |x ∈ X}

◮ Define I0 : ιι by λX .{I1x |x ∈ X}.

◮ Easy: ∀XY .I0X 6= I1Y and I00 = 0.

◮ Define a one-sided inverse I− : ιι recursively:

I−X = {I−x |x ∈ X \ {0}}
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Pairs as Disjoint Sums

◮ Define I1 by ∈-recursion:

I1X = {0} ∪ {I1x |x ∈ X}

◮ Define I0 : ιι by λX .{I1x |x ∈ X}.

◮ Easy: ∀XY .I0X 6= I1Y and I00 = 0.

◮ Define a one-sided inverse I− : ιι recursively:

I−X = {I−x |x ∈ X \ {0}}

◮ ∀X .I−(I1X ) = X by ∈-induction.
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Pairs as Disjoint Sums

◮ Define I1 by ∈-recursion:

I1X = {0} ∪ {I1x |x ∈ X}

◮ Define I0 : ιι by λX .{I1x |x ∈ X}.

◮ Easy: ∀XY .I0X 6= I1Y and I00 = 0.

◮ Define a one-sided inverse I− : ιι recursively:

I−X = {I−x |x ∈ X \ {0}}

◮ ∀X .I−(I1X ) = X by ∈-induction.

◮ ∀X .I−(I0X ) = X follows.
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Pairs

◮ (X ,Y ) := {I0x |x ∈ X} ∪ {I1y |y ∈ Y }
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Pairs

◮ (X ,Y ) := {I0x |x ∈ X} ∪ {I1y |y ∈ Y }

◮ (0,Y ) = ∅ ∪ {I1y |y ∈ Y } = I0Y

◮ (1,Y ) = {I00} ∪ {I1y |y ∈ Y } = I1Y
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Pairs

◮ (X ,Y ) := {I0x |x ∈ X} ∪ {I1y |y ∈ Y }

◮ (0,Y ) = ∅ ∪ {I1y |y ∈ Y } = I0Y

◮ (1,Y ) = {I00} ∪ {I1y |y ∈ Y } = I1Y

◮ (0, 0) = 0
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Functions

Usual Graph Representation:

{(x , y)|y = Fx}

Aczel Representation (“Trace” Representation, Lee-Werner):

{(x , y)|y ∈ Fx}

Define L : ι(ιι)ι by

λXF .
⋃

x∈X

{(x , y)|y ∈ Fx}

Define A : ιιι by λfx .{y |(x , y) ∈ f }
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Properties

◮ ∀XFxy .(x , y) ∈ (λx ∈ X .Fx) ≡ x ∈ X ∧ y ∈ Fx
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Properties

◮ ∀XFxy .(x , y) ∈ (λx ∈ X .Fx) ≡ x ∈ X ∧ y ∈ Fx

◮ ∀fxy .y ∈ fx ≡ (x , y) ∈ f
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Properties

◮ ∀XFxy .(x , y) ∈ (λx ∈ X .Fx) ≡ x ∈ X ∧ y ∈ Fx

◮ ∀fxy .y ∈ fx ≡ (x , y) ∈ f

◮ Beta: ∀XFx .x ∈ X → (λx ∈ X .Fx)x = Fx

◮ ∀XFx .x /∈ X → (λx ∈ X .Fx)x = 0
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Properties

◮ ∀XFxy .(x , y) ∈ (λx ∈ X .Fx) ≡ x ∈ X ∧ y ∈ Fx

◮ ∀fxy .y ∈ fx ≡ (x , y) ∈ f

◮ Beta: ∀XFx .x ∈ X → (λx ∈ X .Fx)x = Fx

◮ ∀XFx .x /∈ X → (λx ∈ X .Fx)x = 0

◮ ∀F .(λz ∈ 2.Fz) = (F0,F1)
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Properties

◮ ∀XFxy .(x , y) ∈ (λx ∈ X .Fx) ≡ x ∈ X ∧ y ∈ Fx

◮ ∀fxy .y ∈ fx ≡ (x , y) ∈ f

◮ Beta: ∀XFx .x ∈ X → (λx ∈ X .Fx)x = Fx

◮ ∀XFx .x /∈ X → (λx ∈ X .Fx)x = 0

◮ ∀F .(λz ∈ 2.Fz) = (F0,F1)

◮ ∀xy .(x , y)0 = x and ∀xy .(x , y)1 = y
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Properties

◮ ∀XFxy .(x , y) ∈ (λx ∈ X .Fx) ≡ x ∈ X ∧ y ∈ Fx

◮ ∀fxy .y ∈ fx ≡ (x , y) ∈ f

◮ Beta: ∀XFx .x ∈ X → (λx ∈ X .Fx)x = Fx

◮ ∀XFx .x /∈ X → (λx ∈ X .Fx)x = 0

◮ ∀F .(λz ∈ 2.Fz) = (F0,F1)

◮ ∀xy .(x , y)0 = x and ∀xy .(x , y)1 = y

◮ ∀xyi .i /∈ 2 → (x , y)i = 0
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Sums and Products

◮ Define QΣ to be L since ∀XFz .

z ∈ (λx ∈ X .Fx) ≡ ∃x .x ∈ X ∧ ∃y .y ∈ Fx ∧ z = (x , y)
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◮ Define QΣ to be L since ∀XFz .

z ∈ (λx ∈ X .Fx) ≡ ∃x .x ∈ X ∧ ∃y .y ∈ Fx ∧ z = (x , y)

◮ “Sigma is lambda.” Σx ∈ s.t is λx ∈ s.t
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◮ Define QΣ to be L since ∀XFz .

z ∈ (λx ∈ X .Fx) ≡ ∃x .x ∈ X ∧ ∃y .y ∈ Fx ∧ z = (x , y)

◮ “Sigma is lambda.” Σx ∈ s.t is λx ∈ s.t

◮ Define QΠ to be

λXY .{f ∈ ℘(Σx ∈ X .
⋃

(Yx))|∀x .x ∈ X → fx ∈ Yx}
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Sums and Products

◮ Define QΣ to be L since ∀XFz .

z ∈ (λx ∈ X .Fx) ≡ ∃x .x ∈ X ∧ ∃y .y ∈ Fx ∧ z = (x , y)

◮ “Sigma is lambda.” Σx ∈ s.t is λx ∈ s.t

◮ Define QΠ to be

λXY .{f ∈ ℘(Σx ∈ X .
⋃

(Yx))|∀x .x ∈ X → fx ∈ Yx}

◮ s × t means Σx : s.t where x is not free in t.

◮ ts means Πx : s.t where x is not free in t.
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Sums and Products

◮ Define QΣ to be L since ∀XFz .

z ∈ (λx ∈ X .Fx) ≡ ∃x .x ∈ X ∧ ∃y .y ∈ Fx ∧ z = (x , y)

◮ “Sigma is lambda.” Σx ∈ s.t is λx ∈ s.t

◮ Define QΠ to be

λXY .{f ∈ ℘(Σx ∈ X .
⋃

(Yx))|∀x .x ∈ X → fx ∈ Yx}

◮ s × t means Σx : s.t where x is not free in t.

◮ ts means Πx : s.t where x is not free in t.

◮ The properties mentioned earlier follow.

◮ In particular: X × X = X {0,1}.
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Monotonicity Properties

◮ If X ⊆ Y and ∀x .x ∈ X → Zx ⊆ Wx , then

(Σx ∈ X .Zx) ⊆ Σy ∈ Y .Wy .
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Monotonicity Properties

◮ If X ⊆ Y and ∀x .x ∈ X → Zx ⊆ Wx , then

(Σx ∈ X .Zx) ⊆ Σy ∈ Y .Wy .

◮ If X ⊆ W and Y ⊆ Z , then (X ,Y ) ⊆ (W ,Z ).
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(Σx ∈ X .Zx) ⊆ Σy ∈ Y .Wy .

◮ If X ⊆ W and Y ⊆ Z , then (X ,Y ) ⊆ (W ,Z ).

◮ Codomain Covariance: If ∀x .x ∈ X → Ax ⊆ Bx , then

(Πx ∈ X .Ax) ⊆ Πx ∈ X .Bx .
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◮ If X ⊆ Y and ∀x .x ∈ X → Zx ⊆ Wx , then

(Σx ∈ X .Zx) ⊆ Σy ∈ Y .Wy .

◮ If X ⊆ W and Y ⊆ Z , then (X ,Y ) ⊆ (W ,Z ).

◮ Codomain Covariance: If ∀x .x ∈ X → Ax ⊆ Bx , then

(Πx ∈ X .Ax) ⊆ Πx ∈ X .Bx .

◮ Domain Covariance: If X ⊆ Y and
∀y .y ∈ Y → y /∈ X → 0 ∈ Ay , then

(Πx ∈ X .Ax) ⊆ Πy ∈ Y .Ay
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Monotonicity Properties

◮ If X ⊆ Y and ∀x .x ∈ X → Zx ⊆ Wx , then

(Σx ∈ X .Zx) ⊆ Σy ∈ Y .Wy .

◮ If X ⊆ W and Y ⊆ Z , then (X ,Y ) ⊆ (W ,Z ).

◮ Codomain Covariance: If ∀x .x ∈ X → Ax ⊆ Bx , then

(Πx ∈ X .Ax) ⊆ Πx ∈ X .Bx .

◮ Domain Covariance: If X ⊆ Y and
∀y .y ∈ Y → y /∈ X → 0 ∈ Ay , then

(Πx ∈ X .Ax) ⊆ Πy ∈ Y .Ay

◮ Combined Result: If ∀x .x ∈ X → Ax ⊆ Bx , X ⊆ Y and
∀y .y ∈ Y → y /∈ X → 0 ∈ By , then

(Πx ∈ X .Ax) ⊆ Πy ∈ Y .By
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Monotonicity Properties

◮ A0 = {∅} = 1

◮ If 0 ∈ A, n is a natural number and m ∈ n, then

Am ⊆ An
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◮ If 0 ∈ A, n is a natural number and m ∈ n, then

Am ⊆ An



Higher-Order
Logic and Set

Theory:
Stronger
Together

Brown

Introduction

Higher-Order
Logic

Higher-Order
Tarski-
Grothendieck

Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions

Many Fake
Theorems

Conclusion

Monotonicity Properties

◮ A0 = {∅} = 1

◮ If 0 ∈ A, n is a natural number and m ∈ n, then

Am ⊆ An

◮ If 0 ∈ A, then

1 = A0 ⊆ A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ · · ·
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Monotonicity Properties

◮ A0 = {∅} = 1

◮ If 0 ∈ A, n is a natural number and m ∈ n, then

Am ⊆ An

◮ If 0 ∈ A, then

1 = A0 ⊆ A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ · · ·

◮ Don’t get greedy: A1 6= A.



Higher-Order
Logic and Set

Theory:
Stronger
Together

Brown

Introduction

Higher-Order
Logic

Higher-Order
Tarski-
Grothendieck

Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions

Many Fake
Theorems

Conclusion

Monotonicity Properties

◮ A0 = {∅} = 1

◮ If 0 ∈ A, n is a natural number and m ∈ n, then

Am ⊆ An

◮ If 0 ∈ A, then

1 = A0 ⊆ A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ · · ·

◮ Don’t get greedy: A1 6= A.

◮ Embrace the fake theorems.
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Conclusion

◮ Combining HOL with ZF allows us to state theorems
generically, avoiding representation issues.

◮ Or...we can choose nonstandard representations, e.g.:

◮ Pairs and functions can be represented so that pairs are
functions from 2 X × X = X 2
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Conclusion

◮ Combining HOL with ZF allows us to state theorems
generically, avoiding representation issues.

◮ Or...we can choose nonstandard representations, e.g.:

◮ Pairs and functions can be represented so that pairs are
functions from 2 X × X = X 2

◮ ...and other “fake theorems” / surprising properties.
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Conclusion

◮ Combining HOL with ZF allows us to state theorems
generically, avoiding representation issues.

◮ Or...we can choose nonstandard representations, e.g.:

◮ Pairs and functions can be represented so that pairs are
functions from 2 X × X = X 2

◮ ...and other “fake theorems” / surprising properties.

◮ The representations may be more convenient for
formalized mathematics than the usual Kuratowski pairs
and “functions as graphs” representations.



Higher-Order
Logic and Set

Theory:
Stronger
Together

Brown

Introduction

Higher-Order
Logic

Higher-Order
Tarski-
Grothendieck

Specification of
Pairs and
Functions

Implementation
of Pairs and
Functions

Many Fake
Theorems

Conclusion

References

◮ Peter Aczel. The type theoretic interpretation of constructive set theory.
1978.

◮ Chad E. Brown. Reconsidering Pairs and Functions as Sets. 2015.

◮ Alonzo Church. A formulation of the simple theory of types. 1940.

◮ Grzegorz Bancerek. Algebra of morphisms. 1997, 2003.

◮ Mike Gordon. Set Theory, Higher Order Logic or Both? 1996

◮ Gyesik Lee, Benjamin Werner. Proof-irrelevant model of CC with
predicative induction and judgmental equality. 2011.

◮ Anthony P. Morse. A Theory of Sets. 1965.

◮ Lawrence C. Paulson. Set theory for verification: I. from foundations to
functions. 1993.

◮ Patrick Suppes. Axiomatic Set Theory. 1972.

◮ Zermelo. Über Grenzzahlen und Mengenbereiche. 1930.


	Introduction
	Higher-Order Logic
	Higher-Order Tarski-Grothendieck
	Specification of Pairs and Functions
	Implementation of Pairs and Functions
	Many Fake Theorems
	Conclusion

