# t8_member_1 (TMWpB- <br> VrA6DDeHdXqHfcwHgcjX75s5KySQd1) 

October 27, 2020

Let $v 2 \_$membered : $\iota \Rightarrow 0$ be given. Let $k 4 \_$member_1 : $\iota \Rightarrow \iota$ be given. Let $k 5 \_x b o o l e \_0: \iota \Rightarrow \iota \Rightarrow \iota$ be given. Let $k 6_{\_}$subset_1 : $\iota \Rightarrow \iota \Rightarrow \iota$ be given. Let $k 2 \_x b o o l e \_0$ : $\iota \Rightarrow \iota \Rightarrow \iota$ be given. Let $k 4 \_$xboole $\_0: \iota \Rightarrow \iota \Rightarrow \iota$ be given. Assume the following.
$\forall X 0 .\left(v 2 \_m e m b e r e d X 0\right) \Rightarrow\left(\forall X 1 .\left(v 2 \_m e m b e r e d ~ X 1\right) \Rightarrow\left(k 4 \_m e m b e r \_1\right.\right.$
(k6_subset_1 X0 X1) $=k 6$ _subset_1 ( $k 4$ _member_1 X0) (k4_member_1 X1)))

Assume the following.
$\forall X 0 .\left(v 2 \_m e m b e r e d X 0\right) \Rightarrow\left(\forall X 1 .\left(v 2 \_m e m b e r e d \quad X 1\right) \Rightarrow\left(k 4 \_m e m b e r \_1\right.\right.$
$\left(k 2 \_x b o o l e \_0 X 0 X 1\right)=k 2 \_x b o o l e \_0\left(k 4 \_m e m b e r \_1 X 0\right)\left(k 4 \_m e m b e r \_1\right.$ X1)))

Assume the following.

$$
\begin{equation*}
\forall X 0 . \forall X 1 . k 6 \_ \text {subset_1 } X 0 X 1=k 4 \_x b o o l e \_0 X 0 X 1 \tag{3}
\end{equation*}
$$

Assume the following.

$$
\begin{gather*}
\forall X 0 . \forall X 1 \text {. (v2_membered } X 0) \Rightarrow\left(v 2 \_ m e m b e r e d ~ \left(k 4 \_x b o o l e \_0\right.\right.  \tag{4}\\
X 0 X 1))
\end{gather*}
$$

Assume the following.

$$
\begin{gather*}
\forall X 0 . \forall X 1 . k 5 \_x b o o l e \_0 X 0 X 1=k 2 \_x b o o l e \_0\left(k 4 \_x b o o l e \_0\right. \\
X 0 ~ X 1)\left(k 4 \_x b o o l e \_0 X 1 X 0\right) \tag{5}
\end{gather*}
$$

Assume the following.

$$
\begin{equation*}
\forall X 0 . \forall X 1 . k 2 \_x b o o l e \_0 X 0 X 1=k 2 \_x b o o l e \_0 X 1 X 0 \tag{6}
\end{equation*}
$$

## Theorem 1

$\forall X 0 .\left(v 2 \_\right.$membered $\left.X 0\right) \Rightarrow\left(\forall X 1\right.$. $\left(v 2 \_m e m b e r e d ~ X 1\right) \Rightarrow\left(k 4 \_m e m b e r \_1\right.$
$\left(k 5 \_x b o o l e \_0 X 0 X 1\right)=k 5 \_x b o o l e \_0\left(k 4 \_m e m b e r \_1 X 0\right)\left(k 4 \_m e m b e r \_1\right.$ X1)))

