
NOTES ON PROOFGOLD REWARD BOUNTY CONJECTURES

CHAD E. BROWN

The Proofgold1 consensus algorithm sends half of each block reward as a bounty to a
Reward Bounty Conjecture [1]. One kind of bounty conjecture is related to The AIM
Conjecture [2]. An analysis of the current conjectures in this class reveals that some
are very easy and others are as hard as (half of) The AIM Conjecture itself. We give
an obvious �x to prevent very easy conjectures. Using loops of small size (5, 6 and
7), we give estimates on how to modify the problems so that a probability of having a
countermodel can be targeted. We also suggest a way of combining the loop problems
with the existence of Ramsey graphs as a way of making the problems more likely to
be di�cult. We end with a hard fork proposal.

1. Loops and Inner Mappings

Loops are given by a carrier set Q, an identity element e ∈ Q, and three binary
operations ·, \ and / on Q satisfying certain laws. Given a loop certain families of
inner mappings Tx, Lx,y and Rx,y can be de�ned. A loop is AIM if all inner mappings
commute. It turns out that the inner mappings of the form Tx, Lx,y and Rx,y generate
all inner mappings, so it is enough to say each of these commute (essentially giving six
parameterized equations).
Proofgold also considers four other families of inner mappings:

• I1xu = x · (u · (x\e)).
• J1

xu = ((e/x) · u) · x.
• I2xu = (x\u) · ((x\e)\e).
• J2

xu = (e/(e/x)) · (u/x).

2. Candidate Counterexamples

The AIM related Proofgold bounty conjectures all state that every loop where some
inner mappings commute and some inner mappings have a small �nite order must satisfy
one of the following two conclusions:

(1) (Lx,yu\e) · u commutes with all elements.
(2) (e/u) ·Rx,yu is in the middle nucleus.

The relationship to The AIM Conjecture is that if the two conclusions above hold
for every AIM loop, then The AIM Conjecture follows. We say a loop is a candidate

counterexample of type 1 if there exist x, y, u, w such that ((Lx,yu\e) · u) · w and w ·
((Lx,yu\e)·u) are di�erent. We say a loop is a candidate counterexample of type 2 if there
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exist x, y, u, z, w such that z · (((e/u) ·Rx,yu) ·w) and (z · ((e/u) ·Rx,yu)) ·w are di�erent.
We say a loop is a candidate counterexample if it is a candidate counterexample of type
1 or of type 2.
There are no candidate counterexamples of cardinality less than 5. Of cardinality 5,

there are 6 loops (up to isomorphism). All except the group Z5 is a candidate coun-
terexample. In fact all the nongroups of cardinality 5 are candidate counterexamples
of both types. Of cardinality 6, there are 109 loops. Of these, 95 are candidate coun-
terexamples of type 1 and 101 are candidate counterexamples of type 2, with a total of
104 candidate counterexamples. There are 23746 loops of cardinality 7, one of which is
the group Z7. Every loop of cardinality 7 except Z7 is a candidate counterexample of
type 1. Among these all but 16 are also candidate counterexamples of type 2.
In total there are 23854 candidate counterexamples of cardinality at most 7.

3. Inner Mapping Hypotheses

There are two kinds of hypotheses brie�y mentioned above. The �rst is that �some�
inner mappings commute. This is realized by randomly choosing some collections of
inner mappings from the families above, composing them, and then asserting that pairs
of the compositions commute. The second is that �some� inner mappings have a small
�nite order. This is realized by randomly choosing some collections of inner mappings,
composing them between 2 and 5 times, and asserting that the result is the identity
mapping. All AIM loops will satisfy the �rst kind of hypotheses, but not all AIM loops
will satisfy the second kind.
Let us �rst note the �aw in the second kind of hypotheses. Suppose we randomly

choose the inner mapping given by TxLy,z and assert that (TxLy,z)
4 is the identity

mapping. Let us next suppose we randomly choose the inner mapping Rx,yTz and
assert that (Rx,yTz)

3 is the identity mapping. Note that Le,e and Re,e are the identity
mapping and so we can infer (Tx)

4 and (Tx)
3 are the identity mapping. It follows that

Tx is the identity mapping since its order must divide both 3 and 4. If Tx is the identity
mapping for all x, then the loop is commutative. In this case the loop is trivially not a
candidate counterexample of type 1.
Under similar pairs of assumptions about the orders of inner mappings it is often

easy to infer Lx,y or Rx,y is the identity mapping implying the loop is associative. No
associative loop is a candidate counterexample of type 2.
Due to these observations many of the AIM related reward bounty propositions are

easily provable. One can ignore the hypotheses saying certain inner mappings com-
mute and simply combine the hypotheses that some inner mappings have a small �nite
order to prove the loop must be commutative or associative. Combining this with
the assumption that the loop is a candidate counterexample of type 1 or 2 gives a
contradiction.
A simple way to prevent generating these trivial cases is to have at most one hypoth-

esis stating some inner mappings have a small �nite order.
Let us next note �aws in the �rst kind of hypotheses. Since Te, Lx,e, Le,x, Rx,e and

Re,x are always the identity mapping, assumptions above composed inner mappings
commuting can be instantiated in ways that say many simpler inner mappings commute.
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For example, suppose we, as above, randomly consider TxLy,z and Rx,yTz. In this case
we say the two kinds of inner mappings commute:

Tx1Ly1,z1Rx2,y2Tz2 = Rx2,y2Tz2Tx1Ly1,z1 .

By specializing in di�erent ways we can infer

Tx1Tz2 = Tz2Tx1 ,

Ly1,z1Tz2 = Tz2Ly1,z1 ,

Tx1Rx2,y2 = Rx2,y2Tx1

and

Ly1,z1Rx2,y2 = Rx2,y2Ly1,z1 .

That is, from one hypothesis about randomly generated kinds of inner mappings com-
muting we have inferred four of the six conditions su�cient to require the loop to be
an AIM loop. Due to this, it appears to be the case that many (probably most) of the
randomly generated conditions do not say �some� inner mappings commute but that
�all� inner mappings commute.
As a consequence it appears that AIM related reward bounty conjectures tend to fall

into one of two classes: those which are trivial because the loop must be commutative
or associative, and those which are only about AIM loops (making the problem almost
as hard as the full AIM Conjecture).
One possible way to �x this second issue is to not generate compositions of inde-

pendent inner mappings such as Rx,yTz but only compositions with dependencies such
as Rx,yTx·y. Note that if x or y is e, then Rx,y is simply the identity function so that
Rx,yTx·y is Ty or Tx. If x · y is e, then Rx,yTx·y is Rx,x\e, a special case of R.
In addition, the current number of hypotheses about inner mappings commuting

seems excessive. In total there are currently 20 identities of this form generated. In the
next section we use evaluations on small candidate counterexamples to suggest that a
smaller number of identities would be more appropriate.

4. Identities and Candidate Counterexamples

A nominated inner mapping with one parameter is either Tx, I
1
x, J

1
x , I

2
x or J2

x . A
nominated inner mapping with two parameters is either Lx,y or Rx,y. A nominated

operation is one of the following sixteen binary operations (on x and y):

x · y x\y x/y (y · x)\(x · y)
(x\y)/x x\(y/x) Txy Tyx
I1xy I1yx J1

xy J1
yx

I2xy I2yx J2
xy J2

yx

We consider the following families of identities:

A0: (Fx,yGzHw)
nu = u where n ∈ {2, 3, 4, 5}, F is a nominated inner mapping

with two parameters and G and H are nominated inner mappings with one
parameter.
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A1: (Dx,yGzHxFy,z)
nu = u where n ∈ {2, 3, 4, 5}, D and F are nominated inner

mappings with two parameters and G and H are nominated inner mappings
with one parameter.

A2: (Dx,yGzFx,yHz)
nu = u where n ∈ {2, 3, 4, 5}, D and F are nominated inner

mappings with two parameters and G and H are nominated inner mappings
with one parameter.

B: GxHy = HyGx where G and H are nominated inner mappings with one pa-
rameter.

C: Fx,yGz = GzFx,y where F is a nominated inner mapping with two parameters
and G is a nominated inner mapping with one parameter.

D: Dx,yFz,w = Fz,wDx,y where D and F are nominated inner mappings with two
parameters. Note that these are always one of the conditions LL, LR or RR.

E1: Fx,f1(y,z)G
1
f2(x,z)

G2
g1(w,v)G

3
g2(w,v) = G2

g1(w,v)G
3
g2(w,v)Fx,f1(y,z)G

1
f2(x,z)

where F is a

nominated inner mapping with two parameters, G1, G2 and G3 are nominated
inner mappings with one parameter and f1, f2, g1 and g2 are nominated opera-
tions.

E2: Dx,f1(x,y)Gf2(x,f3(y,z))Fw,vHg(w,v) = Fw,vHg(w,v)Dx,f1(x,y)Gf2(x,f3(y,z)) whereD and
F are a nominated inner mappings with two parameters, G and H are nomi-
nated inner mappings with one parameter and f1, f2, f3 and g are nominated
operations.

F: Df1(x,y),zG
1
f2(x,z)

G2
yFg1(w,u),vG

3
g2(u,v)

= Fg1(w,u),vG
3
g2(u,v)

Df1(x,y),zG
1
f2(x,z)

G2
y where

D and F are a nominated inner mappings with two parameters, G1, G2 and
G3 are nominated inner mappings with one parameter and f1, f2, g1 and g2 are
nominated operations.

For simplicity, we have combined the families A0, A1 and A2 into a single family A
and combined the families E1 and E2 into a single family E. There are 1000 possible
identities of type A, 25 possible identities of type B, 10 possible identites of type C,
3 possible identities of type D, almost 23 million possible identities of type E and
over 32 million possible identities of type F. In order to estimate the probability of
small candidate counterexamples satisfying the identities above, we consider all the
identities of type B, C and D and a random selection of 100 identities of the other
types. We evaluate these identities on all 5 candidate counterexamples of cardinality 5,
all 104 candidate counterexamples of cardinality 6 and 68 randomly selected candidate
counterexamples of cardinality 7. Table 1 shows the percentage of times a candidate
counterexample satis�ed an identity from the given family.
We can use these numbers to give very rough estimates for how often a �nite loop sat-

is�es a collection of identities from these classes. We estimate probabilities of combined
events by simply multiplying probabilities, which is, of course, only valid assuming
independence. One reason the estimates should only be considered �very rough� is
that the events are de�nitely not independent. For example, I1x can be expressed as
Lx\e,xTx\e. Consequently any loop satisfying TxTy = TyTx from class B (for all x, y)
and TxLy,z = Ly,zTx from class C (for all x, y, z) must satisfy I1xTy = TyI

1
x from class

B. Nevertheless, the hope is the estimates provide enough of a guide to choose the
parameter settings below.
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Size 5 Size 6 Size 7 Total
A 1% 0.7% 0 0.44%
B 12.8% 8.9% 0.7% 5.88%
C 8% 5.2% 0 3.28%
D 0 2.9% 0 1.69%
E 0.4% 2.83% 0.04% 1.69%
F 0 0.79% 0 0.46%

Table 1. How often a candidate counterexample satis�es an identity

q5C q6C q7C qn<ω
C

A 0.001 0.007 0 0.0044
B 0.128 0.089 0.007 0.0588
C 0.08 0.052 0 0.0328
D 0 0.029 0 0.0169
E 0.004 0.0283 0.0004 0.0169
F 0 0.0079 0 0.0046

Table 2. Estimated probabilities

Let us suppose we select an identity from each class C with probability pC , and do
not select an identity with probability 1− pC . Furthermore, let us say we try to select
from class C nC times, giving between 0 and nC identities from the class. Let qC be
the probability that a candidate counterexample loop (possibly from a preselected pop-
ulation) satis�es an identity from C. The probability that a candidate counterexample
loop satis�es the chosen set of identities can be computed as

pnC
C qnC

C +

(
n− 1

n

)
pnC−1
C (1− pC)q

nC−1
C + · · ·+ (1− pC)

nC .

For di�erent choices of nC and pC for C ∈ {A,B,C,D,E,F} we can calculate estimates
for the relevant probability using the values in Table 1 to estimate values of qC . To
be clear, Table 2 gives estimated values of qC when restricted to Size 5, Size 6, Size
7 or general sizes. We write qnC for qC where the population is restricted to loops of
cardinality n and write qn<ω

C where the population is all �nite loops. The values for
cardinalities 5 and 6 are most likely to be accurate since all candidate counterexamples
were considered. The degree to which qn<ω

C estimates are accurate when the data used
only small loops is highly questionable, but our goal here is only to give rough estimates
to justify possible choices of parameters.
In order to obtain probabilities of di�erent orders of magnitude it will be enough to

consider pC ∈ {0.25, 0.5, 0.75, 1} and nC ∈ {1, 2, 3}. We only consider nA = 1 since
nA > 1 risks forcing the loop to be commutative or associative as discussed in the
previous section. Furthermore we only consider pA = 0.75 so that 25% of the choices
will only include AIM identities and 75% will include an additional identity. To be
more speci�c, 25% will contain an identity from A0, 25% will contain an identity from
A1 and 25% will contain an identity from A2. In order to ensure a su�cient amount of
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(nA, pA, nB, pB, nC, pC, nD, pD, nE, pE, nF, pF) estimated rarity

(1,0.75,3,0.25,2,0.25,2,0.25,4,1,3,0.5) 109

(1,0.75,2,0.5,3,0.75,1,0.5,4,1,1,0.5) 1010

(1,0.75,3,0.25,1,0.25,1,1,4,1,2,0.75) 1011

(1,0.75,2,0.25,3,0.25,2,1,4,1,1,0.5) 1012

(1,0.75,1,0.5,1,0.25,3,0.25,4,1,2,1) 1013

(1,0.75,2,1,1,1,1,1,4,1,2,0.5) 1014

(1,0.75,3,0.25,3,0.75,3,1,4,1,2,0.5) 1015

(1,0.75,1,1,3,0.75,3,1,4,1,2,0.5) 1016

(1,0.75,3,1,1,1,2,1,4,1,1,0.75) 1017

(1,0.75,1,1,1,1,3,0.5,4,1,3,1) 1018

(1,0.75,3,1,2,0.75,3,1,4,1,2,0.75) 1019

(1,0.75,3,0.5,2,1,1,1,4,1,3,1) 1020

(1,0.75,1,1,3,1,3,1,4,1,1,1) 1021

(1,0.75,1,0.75,1,1,3,1,4,1,3,1) 1022

(1,0.75,2,1,1,0.75,3,1,4,1,3,1) 1023

Table 3. Estimated rarity under parameter values

randomness in the selection of axioms, we will take pE to be 1 and nE to be 4, so that
four identities are always chosen from E. Table 3 gives values for pC and nC for each
class along with the estimated number of candidate counterexample loops that would
need to be considered before one satisfying a random collection of identities would be
satis�ed. These parameters could be used to implement the creation of random reward
bounty propositions that are likely to be of increasing di�culty to resolve.

5. Ramsey Graphs

In order to make the reward bounty propositions more interesting, more varied and
more likely to be di�cult, we can combine the loop problems with the existence of
Ramsey graphs. A Ramsey graph is a counterexample to R(r, s) ≤ n, i.e., a graph with
n vertices where there is no clique of size r and no anticlique of size s. An easy small
example of a Ramsey graph is the graph (V,E) with V = {a, b, c, d, e} and

E = {(a, b), (b, a), (b, c), (c, b), (c, d), (d, c), (d, e), (e, d), (e, a), (a, e)}

ensuring R(3, 3) > 5. This Ramsey graph can be represented as a loop with a selected
subset inducing the edges. Suppose V is a loop with operation · and X ⊆ V . We say
the induced edge relation is

E = {(y, z) ∈ V × V |∃x ∈ X.x · y = z ∨ x · z = y}.

Another way to represent E is using one of the division operations:

E = {(y, z) ∈ V × V |z/y ∈ X ∨ y/z ∈ X}.
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Consider the loop with elements {a, b, c, d, e} and operation

· e a b c d
e e a b c d
a a b c d e
b b d a e c
c c e d a b
d d c e b a

Let X be {a}. The induced edge relation contains the exactly the elements given in
the Ramsey graph above:

E = {(a, b), (b, a), (b, c), (c, b), (c, d), (d, c), (d, e), (e, d), (e, a), (a, e)}.
These edges are supported by the second row of the table giving the operation. In
general, X will indicate a number of rows and will give an edge between each entry and
the element indicating the column.
This method of inducing a graph from a loop and a selected subset is a generalization

of Paley graphs. If q is a prime with q = 1 mod 4, then the Paley graph has vertices
{0, . . . , q − 1} where there is an edge between y and z if y − z (modulo q) is a square
in the �nite �eld of order q. The graph about with 5 vertices is the Paley graph with
q = 5. The Paley graph with q = 17 is the unique Ramsey graph ensuring R(4, 4) > 17.
In our generalization we use a selected set X in place of the set of squares and check if
either y/z or z/y is in X to ensure symmetry.
Let U(r, s) be de�ned for r, s ∈ {3, 4, 5, 6} where r ≤ s by the following table:

r\s 3 4 5 6
3 6 9 14 18
4 18 25 41
5 48 87
6 165

The value U(r, s) is the largest possible value for R(r, s) according to what is currently
known about R. There are 381 conjectures of the form R(r, s) > n where r, s ∈
{3, 4, 5, 6}, n ∈ {5, . . . , 164}, r ≤ s and n < U(r, s). Among these 102 are currently
open mathematical conjectures.
To determine which are open we de�ne L(r, s) for r, s ∈ {3, 4, 5, 6} where r ≤ s by

the following table:
r\s 3 4 5 6
3 6 9 14 18
4 18 25 36
5 43 58
6 102

Here L(r, s) is the smallest possible value for R(r, s) according to what is currently
known about R. If we could prove R(r, s) > n where n ≥ L(r, s), then this would
change what is currently known.
For some values of (r, s, n) with low values of n the conjectures are not interesting. To

prove R(5, 5) > 5 only requires to give a graph with �ve vertices which has no 5-clique
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and no 5-anticlique. A graph with one edge su�ces. To omit these obvious cases, let
us further restrict to those with n ≥ r + s − 1. This leaves 351 conjectures, with the
102 open conjectures still among these.
We can roughly order the triples (r, s, n) by saying (r1, s1, n1) < (r2, s2, n2) if

(o1, r1, s1, n1) < (o2, r2, s2, n2)

lexicographically, where oi is 1 if R(ri, si) > ni is open and oi is 0 otherwise. This allows
us to assign indices from 0 to 350 to the triples as shown in Tables 4, 5 and 6.
For each triple (r, s, n) we can form a conjecture stating that no candidate coun-

terexample of type 1 (or type 2) with n elements satisfying some random identities as
described previously has a subset X that induces a Ramsey graph verifying R(r, s) > n.
In order to prove such a conjecture, one would need to rule out all candidate counterex-
amples of cardinality n satisfying the identities (which will be easy in case there are
none). In order to prove the negation of such a conjecture, one needs to �nd a candidate
counterexample with a selected subset X.
The di�culty of these conjectures can be partially parameterized by the values

(nA, pA, nB, pB, nC, pC, nD, pD, nE, pE, nF, pF) determining how rare the appropriate can-
didate counterexample loops will be. As a second parameter we consider values i ∈
{0, . . . , 223}. For a given value i we choose at random a value j ∈ {i, . . . , i+ 127} and
use the triple with index j from Tables 4, 5 and 6.

6. Four Classes of Problems at Different Levels of Difficulty

We now have four classes of problems each of which can be parameterized:

(1) AIM related conjectures of type 1 parameterized by
(nA, pA, nB, pB, nC, pC, nD, pD, nE, pE, nF, pF).

(2) AIM related conjectures of type 2 parameterized by
(nA, pA, nB, pB, nC, pC, nD, pD, nE, pE, nF, pF).

(3) Ramsey AIM related conjectures of type 1 parameterized by
(nA, pA, nB, pB, nC, pC, nD, pD, nE, pE, nF, pF) and i ∈ {0, . . . , 223}.

(4) Ramsey AIM related conjectures of type 2 parameterized by
(nA, pA, nB, pB, nC, pC, nD, pD, nE, pE, nF, pF) and i ∈ {0, . . . , 223}.

We propose a hard fork to update the generation of reward bounty conjectures to
only generate those from the four classes above. Furthermore, we suggest increasing
the di�culty in 15 phases using the parameters from Table 3. The i parameter for the
Ramsey problems can begin as 0 and be increased by 16 in each phase, with the �nal
phase setting i to 223 (instead of 224).
Each of the �rst fourteen phases could last 5000 blocks (roughly half a year). The

�fteenth phase would be the �nal permanent phase.
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0: (3,3,5) 1: (3,4,6) 2: (3,4,7)
3: (3,4,8) 4: (3,5,7) 5: (3,5,8)
6: (3,5,9) 7: (3,5,10) 8: (3,5,11)
9: (3,5,12) 10: (3,5,13) 11: (3,6,8)
12: (3,6,9) 13: (3,6,10) 14: (3,6,11)
15: (3,6,12) 16: (3,6,13) 17: (3,6,14)
18: (3,6,15) 19: (3,6,16) 20: (3,6,17)
21: (4,4,7) 22: (4,4,8) 23: (4,4,9)
24: (4,4,10) 25: (4,4,11) 26: (4,4,12)
27: (4,4,13) 28: (4,4,14) 29: (4,4,15)
30: (4,4,16) 31: (4,4,17) 32: (4,5,8)
33: (4,5,9) 34: (4,5,10) 35: (4,5,11)
36: (4,5,12) 37: (4,5,13) 38: (4,5,14)
39: (4,5,15) 40: (4,5,16) 41: (4,5,17)
42: (4,5,18) 43: (4,5,19) 44: (4,5,20)
45: (4,5,21) 46: (4,5,22) 47: (4,5,23)
48: (4,5,24) 49: (4,6,9) 50: (4,6,10)
51: (4,6,11) 52: (4,6,12) 53: (4,6,13)
54: (4,6,14) 55: (4,6,15) 56: (4,6,16)
57: (4,6,17) 58: (4,6,18) 59: (4,6,19)
60: (4,6,20) 61: (4,6,21) 62: (4,6,22)
63: (4,6,23) 64: (4,6,24) 65: (4,6,25)
66: (4,6,26) 67: (4,6,27) 68: (4,6,28)
69: (4,6,29) 70: (4,6,30) 71: (4,6,31)
72: (4,6,32) 73: (4,6,33) 74: (4,6,34)
75: (4,6,35) 76: (5,5,9) 77: (5,5,10)
78: (5,5,11) 79: (5,5,12) 80: (5,5,13)
81: (5,5,14) 82: (5,5,15) 83: (5,5,16)
84: (5,5,17) 85: (5,5,18) 86: (5,5,19)
87: (5,5,20) 88: (5,5,21) 89: (5,5,22)
90: (5,5,23) 91: (5,5,24) 92: (5,5,25)
93: (5,5,26) 94: (5,5,27) 95: (5,5,28)
96: (5,5,29) 97: (5,5,30) 98: (5,5,31)
99: (5,5,32) 100: (5,5,33) 101: (5,5,34)
102: (5,5,35) 103: (5,5,36) 104: (5,5,37)
105: (5,5,38) 106: (5,5,39) 107: (5,5,40)
108: (5,5,41) 109: (5,5,42) 110: (5,6,10)
111: (5,6,11) 112: (5,6,12) 113: (5,6,13)
114: (5,6,14) 115: (5,6,15) 116: (5,6,16)

Table 4. Easiest Ramsey Triples



10 CHAD E. BROWN

117: (5,6,17) 118: (5,6,18) 119: (5,6,19)
120: (5,6,20) 121: (5,6,21) 122: (5,6,22)
123: (5,6,23) 124: (5,6,24) 125: (5,6,25)
126: (5,6,26) 127: (5,6,27) 128: (5,6,28)
129: (5,6,29) 130: (5,6,30) 131: (5,6,31)
132: (5,6,32) 133: (5,6,33) 134: (5,6,34)
135: (5,6,35) 136: (5,6,36) 137: (5,6,37)
138: (5,6,38) 139: (5,6,39) 140: (5,6,40)
141: (5,6,41) 142: (5,6,42) 143: (5,6,43)
144: (5,6,44) 145: (5,6,45) 146: (5,6,46)
147: (5,6,47) 148: (5,6,48) 149: (5,6,49)
150: (5,6,50) 151: (5,6,51) 152: (5,6,52)
153: (5,6,53) 154: (5,6,54) 155: (5,6,55)
156: (5,6,56) 157: (5,6,57) 158: (6,6,11)
159: (6,6,12) 160: (6,6,13) 161: (6,6,14)
162: (6,6,15) 163: (6,6,16) 164: (6,6,17)
165: (6,6,18) 166: (6,6,19) 167: (6,6,20)
168: (6,6,21) 169: (6,6,22) 170: (6,6,23)
171: (6,6,24) 172: (6,6,25) 173: (6,6,26)
174: (6,6,27) 175: (6,6,28) 176: (6,6,29)
177: (6,6,30) 178: (6,6,31) 179: (6,6,32)
180: (6,6,33) 181: (6,6,34) 182: (6,6,35)
183: (6,6,36) 184: (6,6,37) 185: (6,6,38)
186: (6,6,39) 187: (6,6,40) 188: (6,6,41)
189: (6,6,42) 190: (6,6,43) 191: (6,6,44)
192: (6,6,45) 193: (6,6,46) 194: (6,6,47)
195: (6,6,48) 196: (6,6,49) 197: (6,6,50)
198: (6,6,51) 199: (6,6,52) 200: (6,6,53)
201: (6,6,54) 202: (6,6,55) 203: (6,6,56)
204: (6,6,57) 205: (6,6,58) 206: (6,6,59)
207: (6,6,60) 208: (6,6,61) 209: (6,6,62)
210: (6,6,63) 211: (6,6,64) 212: (6,6,65)
213: (6,6,66) 214: (6,6,67) 215: (6,6,68)
216: (6,6,69) 217: (6,6,70) 218: (6,6,71)
219: (6,6,72) 220: (6,6,73) 221: (6,6,74)
222: (6,6,75) 223: (6,6,76) 224: (6,6,77)
225: (6,6,78) 226: (6,6,79) 227: (6,6,80)
228: (6,6,81) 229: (6,6,82) 230: (6,6,83)
231: (6,6,84) 232: (6,6,85) 233: (6,6,86)
234: (6,6,87) 235: (6,6,88) 236: (6,6,89)

Table 5. Intermediate Ramsey Triples
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237: (6,6,90) 238: (6,6,91) 239: (6,6,92)
240: (6,6,93) 241: (6,6,94) 242: (6,6,95)
243: (6,6,96) 244: (6,6,97) 245: (6,6,98)
246: (6,6,99) 247: (6,6,100) 248: (6,6,101)
249: (4,6,36) 250: (4,6,37) 251: (4,6,38)
252: (4,6,39) 253: (4,6,40) 254: (5,5,43)
255: (5,5,44) 256: (5,5,45) 257: (5,5,46)
258: (5,5,47) 259: (5,6,58) 260: (5,6,59)
261: (5,6,60) 262: (5,6,61) 263: (5,6,62)
264: (5,6,63) 265: (5,6,64) 266: (5,6,65)
267: (5,6,66) 268: (5,6,67) 269: (5,6,68)
270: (5,6,69) 271: (5,6,70) 272: (5,6,71)
273: (5,6,72) 274: (5,6,73) 275: (5,6,74)
276: (5,6,75) 277: (5,6,76) 278: (5,6,77)
279: (5,6,78) 280: (5,6,79) 281: (5,6,80)
282: (5,6,81) 283: (5,6,82) 284: (5,6,83)
285: (5,6,84) 286: (5,6,85) 287: (5,6,86)
288: (6,6,102) 289: (6,6,103) 290: (6,6,104)
291: (6,6,105) 292: (6,6,106) 293: (6,6,107)
294: (6,6,108) 295: (6,6,109) 296: (6,6,110)
297: (6,6,111) 298: (6,6,112) 299: (6,6,113)
300: (6,6,114) 301: (6,6,115) 302: (6,6,116)
303: (6,6,117) 304: (6,6,118) 305: (6,6,119)
306: (6,6,120) 307: (6,6,121) 308: (6,6,122)
309: (6,6,123) 310: (6,6,124) 311: (6,6,125)
312: (6,6,126) 313: (6,6,127) 314: (6,6,128)
315: (6,6,129) 316: (6,6,130) 317: (6,6,131)
318: (6,6,132) 319: (6,6,133) 320: (6,6,134)
321: (6,6,135) 322: (6,6,136) 323: (6,6,137)
324: (6,6,138) 325: (6,6,139) 326: (6,6,140)
327: (6,6,141) 328: (6,6,142) 329: (6,6,143)
330: (6,6,144) 331: (6,6,145) 332: (6,6,146)
333: (6,6,147) 334: (6,6,148) 335: (6,6,149)
336: (6,6,150) 337: (6,6,151) 338: (6,6,152)
339: (6,6,153) 340: (6,6,154) 341: (6,6,155)
342: (6,6,156) 343: (6,6,157) 344: (6,6,158)
345: (6,6,159) 346: (6,6,160) 347: (6,6,161)
348: (6,6,162) 349: (6,6,163) 350: (6,6,164)

Table 6. Hardest Ramsey Triples
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