
HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS
ALGORITHM

CHAD E. BROWN

Abstract. We describe the theory of hereditarily �nite sets built into Proofgold.
This is the theory in which pseudorandomly generated conjectures are made as part
of the consensus algorithm. The generated conjectures can take a number of di�erent
forms and we discuss each possible form.

1. Introduction

Proofgold1 is a peer to peer cryptocurrency making multiple uses of formal logic. One
of the use cases is the publication of a theory (e.g., the theory of higher-order abstract
syntax [6] or the Mizar style theory of sets [5]) and then developing that theory by
publishing documents with de�nitions, conjectures and proofs. The blockchain records
the theories and their state of development (e.g., which theorems have been proven and
when). The idea for such a blockchain has been described and motivated in earlier
work [30, 26] and is not the focus of this work. Here we focus on a di�erent use case:
using theorem proving as part of the consensus algorithm.
The Proofgold consensus algorithm is a combination of proof of burn (realized by the

burning of litecoins) and proof of stake. E�ectively the more Proofgold bars a node has
staking, the fewer litecoins need to be burned in order to create a new block. Proof
of stake has unfortunate centralizing e�ects since new block rewards go to those with
preexisting stake, e�ectively increasing their stake.2 Proofgold attempts to alleviate this
centralizing e�ect by splitting the block reward into two parts: half of the reward goes
to the staker and half of the reward becomes a bounty on a pseudorandomly generated
conjecture. When someone resolves this conjecture (either by proving it or proving its
negation), then they can claim that half of the reward. This may happen much later
than the creation of the block.3 This can be seen as a form of delayed proof of work .
When someone does the proof of work in the future, they obtain stake in the system
that they can use to become a staker.

Date: August 31, 2020.
Czech Technical University in Prague.
1proofgold.org
2If all bars were being used for staking, the proportions would in principle remain the same. In

practice this does not happen for several reasons. One reason is that larger stakers are less likely to
have their blocks orphaned, so that larger stakers have an advantange exceeding their proportion of
stake.

3For example, as of August 2020, over 2000 blocks have been created, leading to over 50,000 bars
being placed on over 2000 pseudorandom conjectures. Of these, only 6 have been resolved leading to
150 of these bars being claimed.

1

proofgold.org

2 CHAD E. BROWN

The idea of placing a bounty on pseudorandomly generated conjectures is open to
several criticisms. One problem is that the conjecture might be independent. That
is, it might be that neither the conjecture nor its negation is provable. As a simple
example, in a system with no axioms the statement ∀xy.x = y is neither provable nor is
its negation provable. Proofgold's solution to the problem is to use a relatively strong
theory so that the conjectures are unlikely to be independent.4 Speci�cally the built in
theory Proofgold uses for its consensus algorithm is a higher-order theory of hereditarily
�nite sets (HF).
Another problem is that pseudorandomly generated conjectures might not be inter-

esting. This problem in itself may not be too serious, as there is a case to be made
that the work done as part of a proof of work system should not be interesting, as this
creates external incentives. On the other hand, even if the conjectures are not inter-
esting, it is likely that interesting results would be proven as lemmas from which the
uninteresting conjecture can be resolved. For example, it is not particularly interesting
that 57 has no integer square root, but the process of proving it might involve lemmas
about integer squares that could be reused.
Even such uninteresting conjectures such as whether 57 has an integer square root is

unlikely to be generated if we start with a traditional axiomatic set theory. In traditional
set theories, few primitives are required (sometimes only membership itself, leaving the
basic operations as implicitly given by existential axioms). If a theory followed this
approach, then a �random� conjecture would only be able to mention �nite ordinals
if the conjecture essentially de�ned �nite ordinals in the hypothesis. This would be
unlikely in practice, at least without explicitly making such conjectures more likely to be
generated. Proofgold makes these conjectures more likely to be generated by including
many primitive typed constants (over 100) that talk about a variety of mathematical
objects, including sets, pairs, functions, �nite ordinals, equipotence and loops. The
drawback to having a large theory with many primitives and many axioms is that the
theory takes longer to describe. We make an attempt to describe it here, but do not
dwell on many aspects that may deserve more discussion.
In Section 2 we describe the underlying framework of intuitionistic higher-order logic

used by Proofgold for all theories. In Section 3 we start describing HF by giving what
could be called the �proper� primitives and axioms, of which there are few. The re-
maining primitives have a corresponding axiom giving a de�ning equation. However,
these are not de�nitions. They are primitives that could have been de�nitions in an
alternative formulation. The fact that they are primitives make them available to be
used in the pseudorandomly generated conjectures. Section 4 gives several primitives
allowing us to estimate the size of a given set. Section 5 gives several primitives giving
properties of binary relations. Section 6 gives primitives for set theoretic operations
beyond those given with proper axioms. Section 7 gives a ∈-recursion operator (fol-
lowing [4]) and gives a number of de�nitions using the recursion operator. Section 8

4To estimate the probability of a randomly generated conjecture being independent would require
placing some probability distribution on conjectures corresponding to the generation process. We do
not attempt to do this here. Over time empirical estimates should emerge for how likely a pseudoran-
domly generated Proofgold conjecture is to be independent.

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 3

de�nes disjoint unions (which also doubles as a notion of ordered pairs). Using disjoint
unions and power sets, a primitive is given in Section 9 that allows us to give practi-
cally sized terms for sets of speci�c large cardinalities. Section 10 gives primitives for
representing functions, sets of functions, tuples, and similar constructions. Section 11
numbers gives primitives for working with Conway's surreal numbers [12] (which in the
context of HF are the dyadic rationals). Primitives for loops and notations related to
The AIM Conjecture [17] are given in Section 12. Primitives for a representation of
untyped combinatory logic are given in Section 13. Finally in Section 14 we discuss the
classes of pseudorandomly generated conjectures that are part of Proofgold's consensus
algorithm and conclude in Section 15.

2. Intuitionistic Higher-Order Logic

We begin by describing the framework underlying all Proofgold theories: intuitionistic
higher-order logic. The types are simple types and the terms are simply typed λ-terms
in the style of Church [11]. The proof system is a natural deduction system [23] that
admits proof terms in the usual Curry-Howard-de Bruijn style [15, 9, 25].
For the sake of clarity we begin with a careful description of the set of types, the family

of typed terms, the notions of free variables and substitutions, the capture avoiding
substitution operation, α-conversion and βη-reduction. This material is standard and
can be skipped by a reader familiar with these notions.
For simplicity, we assume one uninterpreted base type ι of individuals (although

technically Proofgold allows theories to use multiple uninterpreted base types, with a
technical limit of 65536). In addition we have a special base type o of propositions. All
other types are function types of the form (αβ) of functions from α to β. Such function
types are often written as (α→ β). We omit the arrow since we have no other kinds of
compound types. When parentheses are omitted they should be replaced to the right.
That is, ιιo is the type (ι(ιo)). Let T denote the set of types.
Assume we have countably many variables at each type. Let Vα be the set of variables

of type α. A signature S is a typed family (Sα)α∈T of sets of constants. A signature is
�nite if

⋃
α∈T Sα is �nite. (In practice, all Proofgold signatures will be �nite.) We also

assume there are no con�icts: no variable is also a constant and Vα ∩Vβ = ∅ = Sα ∩Sβ
when α 6= β.
We now de�ne a family (Λα)α∈T of terms recursively, where s ∈ Λα means s is a term

of type α.

• (Variables) If x ∈ Vα, then x ∈ Λα.
• (Constants) If c ∈ Sα, then c ∈ Λα.
• (Application) If s ∈ Λαβ and t ∈ Λα, then (st) ∈ Λβ.
• (Abstraction) If x ∈ Vα and t ∈ Λβ, then (λx.t) ∈ Λαβ.
• (Implication) If s ∈ Λo and t ∈ Λo, then (s→ t) ∈ Λo.
• (Universal Quanti�cation) If x ∈ Vα and t ∈ Λo, then (∀x.t) ∈ Λo.

The λ and ∀ are called binders and they bind the variables that follow. We sometimes
explicitly give the type of variables with the binding construct in order to indicate the
type, e.g., (λx : α.t) and (∀y : β.t) to indicate x ∈ Vα and y ∈ Vβ. If the type is
omitted and no other information is given, the reader can assume the variable has type

4 CHAD E. BROWN

ι. When several binders occur in sequence and all the bound variables have the same
type, we may write the binder only once. That is, (λx1 · · · xn.t) means (λx1. · · · .λxn.t)
and (∀x1 · · ·xn.t) means (∀x1. · · · .∀xn.t).
Parentheses are often omitted, with the convention that application associates to the

left, e.g., stu means (st)u, and implication associates to the right, e.g., s → t → u
means s → (t → u). We assume the scope of bound variables is as far to the right as
possible consistent with parentheses, e.g., ∀p : o.p→ q means ∀p : o.(p→ q).
It is straightforward to de�ne the set F(t) of free variables of a term as follows:

• F(x) = {x}
• F(c) = ∅
• F(st) = F(s) ∪ F(t)
• F(λx.t) = F(t) \ {x}
• F(s→ t) = F(s) ∪ F(t)
• F(∀x.t) = F(t) \ {x}

We say x is free in t if x ∈ F(t). A term t is called closed if F(t) = ∅. A proposition is
a term of type o and a sentence is a closed term of type o.
A substitution θ is a mapping such that dom(θ) ⊆

⋃
α∈T Vα and θ(x) ∈ Λα for all

x ∈ dom(θ). We write θxt for the substitution such that dom(θxt) = dom(θ) ∪ {x},
θxt (x) = t and θxt (y) = θ(y) for y ∈ dom(θ) \ {x}.
For each substitution θ there is a substituion operation θ̂ mapping Λα to Λα (for each

type α). The substitution operation must avoid capturing bound variables. This can
be accomplished by renaming bound variables when necessary.

• θ̂x = θ(x) if x ∈ dom(θ).

• θ̂x = x if x /∈ dom(θ).

• θ̂c = c
• θ̂(st) = (θ̂s θ̂t).

• θ̂(λx.t) = (λy.θ̂xy t) where y is a variable (with the same type as x) such that
y /∈ F(θ(z)) for all z ∈ dom(θ) ∩ F(λx.t). We assume y is x if x already has
this property.
• θ̂(s→ t) = (θ̂s→ θ̂t).

• θ̂(∀x.t) = (∀y.θ̂xy t) where y is a variable (with the same type as x) such that
y /∈ F(θ(z)) for all z ∈ dom(θ) ∩ F(λx.t). We again assume y is x if x already
has this property.

The most common case of substitution sends one variable x ∈ Vα to a term t ∈ Λα.
Using our notation above we can write this substitution as ∅xt . We write sxt as shorthand

for ∅̂xt s. Simply stated, sxt denotes the result of substituting t for all free occurrences of
x (while avoiding capture).
We next de�ne when two terms s and t of the same type are α-convertible. Informally,

this means s and t are the same up to the names of bound variables. It is technically
easier to recursively de�ne a 4-ary relation between two terms (of the same type) and
two substitutions θ and ψ. We write this relation as s ∼θψ t and de�ne it as the least
relation satisfying the following conditions:

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 5

Γ ` s
s ∈ A

Γ ` s
s ∈ Γ

Γ ` s
Γ ` t

s≈t
Γ, s ` t

Γ ` s→ t

Γ ` s→ t Γ ` s
Γ ` t

Γ ` s
Γ ` ∀x.s

x ∈ Vα \ FΓ
Γ ` ∀x.s
Γ ` sxt

x ∈ Vα, t ∈ Λα

Γ ` ∀fg : αβ.(∀x : α.fx = gx)→ f = g
f, g distinct

Figure 1. Natural Deduction Calculus for Intuitionistionistic HOL

• x ∼θψ y if θ̂x = y and ψ̂y = x.

• c ∼θψ c.
• (s1t1) ∼θψ (s2t2) if s1 ∼θψ s2 and t1 ∼θψ t2.
• (λx.s) ∼θψ (λy.t) if s ∼θ

x
y

ψy
x
t.

• (s1 → t1) ∼θψ (s2 → t2) if s1 ∼θψ s2 and t1 ∼θψ t2.
• (∀x.s) ∼θψ (∀y.t) if s ∼θ

x
y

ψy
x
t.

We then say s and t are α-convertible if s ∼∅
∅ t. From now on, we simply say terms are

the same if they are α-convertible.5

A β-redex is a term of the form (λx.s)t and its β-reduct is sxt . An η-redex is a term
of the form (λx.tx) where x /∈ F(t) and its η-reduct is t. A term is βη-normal if it
contains no β-redex and no η-redex. It is well known that βη reduction on simply typed
terms terminates and is con�uent, so that reduction gives a unique normal form [14].
We write s≈t when s and t have the same βη-normal form.
Before moving on to natural deduction proofs and proof terms, we introduce two

new notations for speci�c kinds of terms. For a type α and two terms s, t ∈ Λα, we
write s = t as notation for the term ∀p.pst → pts where p ∈ Vααo is chosen such that
p /∈ F(s) ∪ F(t). We call this term symmetric Leibniz equality .
Given a type α, a variable x ∈ Vα and a proposition t, we write ∃x.t as notation for

the term ∀p.(∀x.t→ p)→ p where p ∈ Vo is chosen such that p /∈ F(t). We adopt the
same notational conventions for ∃ as for the binders ∀ and λ.
Let A be a set of sentences we call axioms . The natural deduction proof system in

Figure 1 de�nes when Γ ` t holds for a �nite set Γ of propositions and a proposition
t. Most rules are what one expects from a natural deduction system: a hypothesis rule
giving Γ ` s when s ∈ Γ and introduction and elimination rules for → and ∀. The
exceptions are the following:

• We include an axiom rule: Γ ` s if s ∈ A.
• We include a conversion rule so that provability respects ≈.

5In the Proofgold implementation, α-convertible terms are equal, as de Bruijn indices are used [10].

6 CHAD E. BROWN

Γ ` Knowns : s
s ∈ A

Γ ` u : s
u : s ∈ Γ

Γ ` D : s

Γ ` D : t
s≈t

Γ, u : s ` D : t

Γ ` (λu : s.D) : s→ t

Γ ` D : s→ t Γ ` E : s

Γ ` (DE) : t

Γ ` D : s

Γ ` (λx.D) : ∀x.s
x ∈ Vα \ FΓ

Γ ` D : ∀x.s
Γ ` (Dt) : sxt

x ∈ Vα, t ∈ Λα

Γ ` Extα,β : (∀fg : αβ.(∀x : α.fx = gx)→ f = g)
f, g distinct

Figure 2. Natural Deduction Calculus with Proof Terms

• We include a functional extensionality rule so that two terms of function type
αβ can be proven equal by proving they give the same results when applied to
arbitrary arguments.6

We brie�y outline proof terms. Let H be a countably in�nite set of hypothesis vari-

ables and assume these do not con�ict with our previous objects (e.g., variables, con-
stants or terms in general). Let P be the set of proof terms given inductively as follows:

• If u ∈ H, then u ∈ P .
• If s is a sentence, then Knowns ∈ P .
• If D, E ∈ P , then (DE) ∈ P .
• If D ∈ P and s ∈ Λα, then (Ds) ∈ P .
• If u ∈ H, s ∈ Λo and D ∈ P , then (λu : s.D) ∈ P .
• If x ∈ Vα and D ∈ P , then (λx.D) ∈ P .
• If α, β ∈ T , then Extα,β ∈ P .

Not all proof terms will correspond to proofs of propositions, but all proofs can be
assigned corresponding proof terms that allow for easy checking of proofs. Let us now
use Γ for sets of pairs of the form u : s where u ∈ H and s ∈ Λo. That is, instead of
having a �nite set of hypotheses, we will have a �nite set of hypotheses with labels. For
the calculus with proof terms we de�ne when Γ ` D : t holds for such a Γ, a proof term
D and a proposition t. The rules with proof terms are given in Figure 2.
In practice proof terms of the form Knowns can be used for any previously proven

theorem as well as axioms. Also, in the implementation the subscript s in Knowns is
only the Merkle root of the sentence s, not the sentence itself.
A Proofgold theory is speci�ed by giving a �nite signature S of typed constants and

a �nite set A of axioms. In the next section we begin the description of the HF theory
used for the Proofgold consensus algorithm. For other examples of Proofgold theories,
see [6, 5].

6Functional extensionality can be considered optional and is only included here because it is included
in the Proofgold implementation.

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 7

3. Proper Axioms of HF

There are only six constants that do not have a de�ning equation as an axiom:

• ε : (ιo)ι (a �choice� operator)
• ∈: ιιo (set membership)
• ∅ : ι (the empty set, also the ordinal 0)
•
⋃

: ιι (the union operator)
• ℘ : ιι (the power set operator)
• Repl : ι(ιι)ι (the replacement operator)

We write ∈ in in�x, i.e., s ∈ t means ∈ st. We will also write ∀x ∈ s.t as shorthand for
∀x.x ∈ s→ t. Furthermore, we write {t|x ∈ s} as notation for the term Repl s (λx.t).
For each of the constants above there is at least one axiom giving a property the

constant must satisfy. In most cases we will need additional logical connectives to state
the axiom. For the case of ε we can already state the axiom.

Axiom 3.1. ∀P : ιo.∀x.P x→ P (ε P).

This has the appearance of a form of the axiom of choice. In fact it will be much
weaker in the context of the full theory. Suppose we have a unique existence operator
(as will be given below) and the axiom above were replaced with the weaker form saying
ε is a description operator:

∀P : ιo.(∃!x.P x)→ P (ε P).

Since the hereditarily �nite sets can be well-ordered, a choice operator ε′ satisfying
Axiom 3.1 could be de�ned from the description operator and the well-ordering.
Let ⊆ be a constant of type ιιo with the following de�nitional axiom:

Axiom 3.2. (⊆) = (λXY.∀x ∈ X.x ∈ Y).

As with ∈, we will generally write ⊆ in in�x.
We now begin including logical constants and their de�ning equations. The de�ni-

tions trace their roots to Russell [24] and Prawitz [23]. Let ⊥ and > be constants of
type o. These have the following de�nitional axioms.

Axiom 3.3. ⊥ = (∀p : o.p).

Axiom 3.4. > = (∀p : o.p→ p).

Let ¬ be a constant of type oo with the following de�nitional axiom:

Axiom 3.5. ¬ = (λA : o.A→ ⊥).

Now that we have negation we will write s 6= t as notation for ¬(s = t). We could
also give similar notations /∈ and 6⊆. Instead the HF theory uses two more constants /∈
and 6⊆ with the following de�nitional axioms:

Axiom 3.6. (/∈) = (λxy.¬ (x ∈ y)).

Axiom 3.7. (6⊆) = (λXY.¬ (X ⊆ Y)).

We write /∈ and 6⊆ in in�x.
Let ∧, ∨ and ↔ be constants of type ooo with the following de�nitional axioms:

8 CHAD E. BROWN

Axiom 3.8. (∧) = (λAB : o.∀p : o.(A→ B → p)→ p).

Axiom 3.9. (∨) = (λAB : o.∀p : o.(A→ p)→ (B → p)→ p).

Axiom 3.10. (↔) = (λAB : o.(A→ B) ∧ (B → A)).

We will write ∧, ∨ and↔ in in�x, with ∧ and ∨ being left associative. We follow the
common convention that ∧ binds more tightly than ∨ which binds more tightly than
↔. We will also write ∃x ∈ s.t as shorthand for ∃x.x ∈ s ∧ t.
We can now state the remaining proper axioms.
The following axiom ensures the theory is classical.

Axiom 3.11. ∀p : o.¬¬p→ p.

The next axiom is a form of propositional extensionality, ensuring that two proposi-
tions are equal if they are equivalent.

Axiom 3.12. ∀AB : o.(A↔ B)→ A = B.

The �rst proper set theory axiom is set extensionality. Two sets are equal if they are
subsets of each other.

Axiom 3.13. ∀XY.X ⊆ Y → Y ⊆ X → X = Y .

The empty set axiom ensures there are no members of the empty set.

Axiom 3.14. ¬∃x.x ∈ ∅.

The axiom for union characterizes when sets are elements of
⋃
X in the expected

way.

Axiom 3.15. ∀Xx.x ∈
⋃
X ↔ ∃Y.x ∈ Y ∧ Y ∈ X.

The axiom for power sets states that ℘X contains precisely the subsets of X.

Axiom 3.16. ∀XY.Y ∈ ℘X ↔ Y ⊆ X.

The axiom for Repl characterizes membership in {F x|x ∈ X}.

Axiom 3.17. ∀X.∀F : ιι.∀y.y ∈ {F x|x ∈ X} ↔ ∃x.x ∈ X ∧ y = F x.

The next axiom essentially states ι is the least (transitive) collection containing ∅
and closed under the set theoretic operations above. This e�ectively states ι consts of
(at most) the hereditarily �nite sets.

Axiom 3.18.

∀p : ιo.(∀X.p X → ∀x ∈ X.p x)→
p ∅

→ (∀X.p X → p (
⋃
X))

→ (∀X.p X → p (℘X))
→ (∀X.p X → ∀F : ιι.(∀x ∈ X.p (F x))→ p {F x|x ∈ X})

→ ∀x.p x

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 9

The �nal proper axiom is ∈-induction. This is very likely to follow from the previous
axiom, but is included here since it is technically included as an axiom of Proofgold's
formulation of the HF theory.

Axiom 3.19. ∀p : ιo.(∀X.(∀x ∈ X.p x)→ p X)→ ∀X.p X.

We �nish the section with four more constants with de�nitional axioms that do not
�t naturally into later sections.
Let exactly1of2 (exclusive or) be a constant of type ooo with the de�nitional axiom:

Axiom 3.20. exactly1of2 = (λAB : o.A ∧ ¬B ∨ ¬A ∧B).

Let exactly1of3 be a constant of type oooo with the following de�nitional axiom:

Axiom 3.21. exactly1of3 = (λABC : o.exactly1of2 A B ∧ ¬C ∨ ¬A ∧ ¬B ∧ C).

We could have ∃! as a binder notation (for variables of general types) that is expanded
in terms of ∀ and→ like we have done for ∃. Instead HF includes a constant for unique
existence speci�cally at the base type ι. Let exu_i be a constant of type (ιo)o with the
following de�nitional axiom:

Axiom 3.22. exu_i = (λP : ιo.(∃x.P x) ∧ (∀xy.P x→ P y → x = y)).

Finally we give a constant for conditionals (in the form of if-then-else). Let If be a
constant of type oιιι with the following de�nitional axiom:

Axiom 3.23. If = (λP : o.λxy.ε (λz.P ∧ z = x ∨ ¬P ∧ z = y)).

Note that If is speci�cally an if-then-else constructor at type ι.

4. Basic Cardinality

We next describe predicates that allow us to express that a given set has at least or
exactly a number of elements. Let atleast2, atleast3, atleast4, atleast5, atleast6, exactly2,
exactly3, exactly4 and exactly5 be constants of type ιo. Each constant has a de�nitional
axiom, given below. Note that we purposefully use ¬(A ⊆ B) instead of (A 6⊆ B)
since the two variables are syntactically di�erent. In particular ¬(A ⊆ B) mentions
two di�erent constants ¬ and ⊆ where (A 6⊆ B) only mentions one: 6⊆.

Axiom 4.1. atleast2 = (λX.∃y.y ∈ X ∧ ¬(X ⊆ ℘y)).

Axiom 4.2. atleast3 = (λX.∃Y.Y ⊆ X ∧ (¬(X ⊆ Y) ∧ atleast2 Y)).

Axiom 4.3. atleast4 = (λX.∃Y.Y ⊆ X ∧ (¬(X ⊆ Y) ∧ atleast3 Y)).

Axiom 4.4. atleast5 = (λX.∃Y.Y ⊆ X ∧ (¬(X ⊆ Y) ∧ atleast4 Y)).

Axiom 4.5. atleast6 = (λX.∃Y.Y ⊆ X ∧ (¬(X ⊆ Y) ∧ atleast5 Y)).

Axiom 4.6. exactly2 = (λX.atleast2 X ∧ ¬atleast3 X).

Axiom 4.7. exactly3 = (λX.atleast3 X ∧ ¬atleast4 X).

Axiom 4.8. exactly4 = (λX.atleast4 X ∧ ¬atleast5 X).

10 CHAD E. BROWN

Axiom 4.9. exactly5 = (λX.atleast5 X ∧ ¬atleast6 X).

In order to generalize beyond the �rst few cardinalities, we de�ne a notion of in-
jectivity and bijectivity to de�ne when one set has at least as many elements (or the
same number of elements) as another set. Let inj and bij be constants of type ιι(ιι)o.
Let atleastp and equip be constants of type ιιo. Note that the notion of injection and
bijection here is for meta-level functions of type ιι, not functions encoded as sets in
some way. These four constants each have a de�nitional axiom, given below.

Axiom 4.10. inj = (λXY.λf : ιι.(∀x ∈ X.fx ∈ Y) ∧ (∀xy ∈ X.fx = fy → x = y)).

Axiom 4.11. bij = (λXY.λf : ιι.inj X Y f ∧ (∀y ∈ Y.∃x ∈ X.fx = y)).

Axiom 4.12. atleastp = (λXY.∃f : ιι.inj X Y f).

Axiom 4.13. equip = (λXY.∃f : ιι.bij X Y f).

5. Properties of Binary Relations

In this section we consider a number of properties of (meta-level) binary relations.
Each of these could be given for relations over a general type α, but as Proofgold
has no support for polymorphism, only the type ι is considered. This is emphasized
by the su�x of the name of each constant. Let reflexive_i, irreflexive_i, symmetric_i,
antisymmetric_i, transitive_i, eqreln_i, per_i, linear_i, trichotomous_or_i, partialorder_i,
totalorder_i, strictpartialorder_i and stricttotalorder_i be constants of type (ιιo)o. We
expect the name of each constant gives an indication of what the constant is intended
to mean, and omit further explanation. Each of these has a de�nitional axiom, given
below.

Axiom 5.1. reflexive_i = (λR : ιιo.∀x.R x x).

Axiom 5.2. irreflexive_i = (λR : ιιo.∀x.¬ (R x x)).

Axiom 5.3. symmetric_i = (λR : ιιo.∀xy.R x y → R y x).

Axiom 5.4. antisymmetric_i = (λR : ιιo.∀xy.R x y → R y x→ x = y).

Axiom 5.5. transitive_i = (λR : ιιo.∀xyz.R x y → R y z → R x z).

Axiom 5.6. eqreln_i = (λR : ιιo.reflexive_i R ∧ symmetric_i R ∧ transitive_i R).

Axiom 5.7. per_i = (λR : ιιo.symmetric_i R ∧ transitive_i R).

Axiom 5.8. linear_i = (λR : ιιo.∀xy.R x y ∨R y x).

Axiom 5.9. trichotomous_or_i = (λR : ιιo.∀xy.R x y ∨ x = y ∨R y x).

Axiom 5.10.

partialorder_i = (λR : ιιo.reflexive_i R ∧ antisymmetric_i R ∧ transitive_i R).

Axiom 5.11. totalorder_i = (λR : ιιo.partialorder_i R ∧ linear_i R).

Axiom 5.12. strictpartialorder_i = (λR : ιιo.irreflexive_i R ∧ transitive_i R).

Axiom 5.13.

stricttotalorder_i = (λR : ιιo.strictpartialorder_i R ∧ trichotomous_or_i R).

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 11

6. Set Operations

We next de�ne a number of new set theoretic operations that can be constructed
from the basic ones given in Section 3.
As pointed out by Paulson [22] following Suppes [27] it is possible to de�ne unordered

pairs using replacement and a set with (at least) two elements, e.g., ℘(℘∅). Let UPair
be a constant of type ιιι with the following de�nitional axiom:

Axiom 6.1. UPair = (λxy.{If (∅ ∈ z) x y|z ∈ ℘(℘∅)}).
We write {s, t} as notation for UPair s t.
It is now trivial to obtain a singleton operation. Let Sing be a constant of type ιι

with the following de�nitional axiom:

Axiom 6.2. Sing = (λx.{x, x}).
We write {s} as notation for Sing s.
In order to be able to generally have notation {s1, . . . , sn} for n > 2 we need a way

to adjoin an element to a set. To obtain this we will include a binary union operation
and use this to de�ne the adjoin operation. Let binunion and SetAdjoin be constants of
type ιιι. The de�nining axiom for binunion is as follows:

Axiom 6.3. binunion = (λXY.
⋃
{X, Y }).

We write s ∪ t as notation for binunion s t. The de�ning axiom for SetAdjoin is as
follows:

Axiom 6.4. SetAdjoin = (λXy.X ∪ {y}).
When n > 2 we write {s1, . . . , sn} for

(SetAdjoin · · · (SetAdjoin {s1, s2} s3) · · · sn).

In addition to arbitrary unions given by
⋃

and binary unions given by ∪, we have
unions of families of sets. Let famunion be a constant of type ι(ιι)ι with the following
de�ninitional axiom:

Axiom 6.5. famunion = (λX.λY : ιι.
⋃
{Y x|x ∈ X}).

We write
⋃
x∈s t as notation for famunion s (λx.t).

The constant Repl gives us a way to interpret the notation {t|x ∈ s}. A more
common notation for sets is {x ∈ s|t}, i.e., the set of all members of s satisfying t. This
corresponds to Zermelo's Separation Axiom [31]. Let Sep be a term of type ι(ιo)ι. We
will write {x ∈ s|t} as notation for Sep s (λx.t). The de�nitional axiom for Sep will
make use of replacement and make two uses if the If operator. Informally, given a set
X : ι and a property P : ιo either ∃x ∈ X.Px holds or it does not. If it does not hold,
then Sep X P can be ∅. If it does hold, then ε(λx.x ∈ X∧Px) yields a �default� element
of X satisfying Px. We can then use replacement over X with a function that behaves
like the identity for elements satisfying P and returns the default element otherwise.
The formal de�nitional axiom looks as follows:

Axiom 6.6.

Sep = (λX.λP : ιo.If (∃x ∈ X.P x) {If (P x) x (ε (λy.y ∈ X ∧ P y))|x ∈ X} ∅).

12 CHAD E. BROWN

We can now combine the replacement and separation operator into one operator
giving a way to interpret notation of the form {t|x ∈ s1, s2} giving the set of all
elements of the form t where x (usually free in t) is an element of s1 and satisfying
the property s2. Formally {t|x ∈ s1, s2} is notation for ReplSep s1 (λx.s2) (λx.t) where
ReplSep is a constant of type ι(ιo)(ιι)ι with the following de�nitional axiom:

Axiom 6.7. ReplSep = (λX.λP : ιo.λF : ιι.{F x|x ∈ {x ∈ X|P x}}).

In addition to binary unions, we include binary intersections and set di�erence. Let
binintersect and setminus be constants of type ιιι. The de�nitional axioms make obvious
uses of separation.

Axiom 6.8. binintersect = (λXY.{x ∈ X|x ∈ Y }).

Axiom 6.9. setminus = (λXY.{x ∈ X|x /∈ Y }).

We end the section considering (�nite) ordinals, giving us a way to interpret natural
numbers as sets. Let ordsucc be a constant of type ιι with the following de�nitional
axiom:

Axiom 6.10. ordsucc = (λX.X ∪ {X}).

We can now use any natural number as notation for a given term in the obvious way:
n is notation for

ordsucc (ordsucc · · · (ordsucc︸ ︷︷ ︸
n

∅) · · ·).

This unary representation is sometimes used in pseudorandomly generated Proofgold
conjectures, but only for relatively small numbers. For larger numbers a term cor-
responding to a set with the given cardinality is used. This representation will be
described in Section 9.
Let nat_p be a constant of type ιo. The de�nitional axiom for nat_p speci�es that

nat_p is the least predicate including 0 and closed under ordsucc.

Axiom 6.11. nat_p = (λx.∀p : ιo.p 0→ (∀n.p n→ p (ordsucc n))→ p x).

In general an ordinal is a set that is well-ordered by ∈. An easy (classical) way to
characterize ordinals is as transitive sets whose elements are all transitive. Let TransSet
and ordinal be constants of type ιo with the following de�nitional axioms:

Axiom 6.12. TransSet = (λU.∀X ∈ U.X ⊆ U).

Axiom 6.13. ordinal = (λX.TransSet X ∧ ∀x ∈ X.TransSet x).

Since HF only contains hereditarily �nite sets, all the ordinals in this theory are
natural numbers. This would still need to be formally proven within Proofgold. Once
it has proven, extensionality principles can strengthen the result to obtain nat_p =
ordinal. This will have the e�ect of allowing people to interchange occurrences of nat_p
and ordinal in the pseudorandomly generated propositions.

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 13

7. Recursion

In this section we give a ∈-recursion operator and show several applications of the
operator. More information about the construction can be found in [4] and some dis-
cussion of its use is in [7].
Let In_rec be a constant of type (ι(ιι)ι)ιι. Our goes is to give a de�nitional axiom

for In_rec so that the identity In_rec F X = F X (In_rec F X) will follow from a
condition on F (that F X g only depends on the value of g on members of X). The
de�nition of In_rec will make use of a separate constant describing the graph of the
function. Let In_rec_G be a constant of type (ι(ιι)ι)ιιo. The de�nitional axiom for
In_rec_G states that In_rec_G is the least relation satisfying the appropriate closure
condition corresponding to the desired identity above.

Axiom 7.1.
In_rec_G = (λF : ι(ιι)ι.λXY.∀R : ιιo.

(∀Z.∀f : ιι.(∀z ∈ Z.R z (f z))→ R Z (F Z f))
→ R X Y).

We can now give the de�nitional axiom for In_rec simply by using ε to lift In_rec_G
from being a relation to being a function.

Axiom 7.2. In_rec = (λF : ι(ιι)ι.λX.ε (λY.In_rec_G F X Y)).

We next use the ∈-recursion operator to de�ne a more speci�c primitive recursion
operator on �nite ordinals. Let nat_primrec be a constant of type ι(ιιι)ιι with the
following de�nitional axiom:

Axiom 7.3.

nat_primrec = (λn.λg : ιιι.
In_rec (λX.λf : ιι.If ((

⋃
X) ∈ X) (g (

⋃
X) (f (

⋃
X))) n))

.

To better understand this axiom, suppose X is a �nite ordinal. If X is 0, then
obviously

⋃
X /∈ X. If X is ordsucc Y for a natural number Y , then

⋃
X is Y (the

predecessor of X).
Using this primitive recursion operator we can de�ne addition and multiplication

on the natural numbers. Let add_nat and mul_nat be constants of type ιιι with the
following de�nitional axioms:

Axiom 7.4. add_nat = (λmn.nat_primrec m (λkr.ordsucc r) n).

Axiom 7.5. mul_nat = (λmn.nat_primrec 0 (λkr.add_nat m r) n).

We can also use the ∈-recursion operator to de�ne the von Neumann hierarchy (as
in [7]). Let V_ be a constant of type ιι with the following de�nitional axiom:

Axiom 7.6. V_ = (In_rec (λX.λY : ιι.
⋃
x∈X ℘(Y x))).

As a �nal application of ∈-recursion, we give ways of tagging and untagging sets.
This is similar to material in [4]. Let Inj1, Inj0 and Unj be constants of type ιι. We will
de�ne Inj1 and Inj0 so that they are injective and always give distinct values. We will

14 CHAD E. BROWN

de�ne Unj so that it is a one-sided inverse of both Inj1 and Inj0. The idea is to de�ne
Inj1 by ∈-recursion to be

Inj1 X = {0} ∪ {Inj1 x|x ∈ X}.

We can then de�ne Inj0 directly by

Inj0 X = {Inj1 x|x ∈ X}.

Intuitively Inj1 adds copies of 0 recursively through the iterative construction of its
input. We can �undo� this construction by recursively removing these copies by de�ning
Unj so that

Unj X = {Unj x|x ∈ X \ {0}}.

The three de�nitial axioms are given below.

Axiom 7.7. Inj1 = (In_rec (λX.λY : ιι.{0} ∪ {Y x|x ∈ X})).

Axiom 7.8. Inj0 = (λX.{Inj1 x|x ∈ X}).

Axiom 7.9. Unj = (In_rec (λX.λY : ιι.{Y z|z ∈ X \ {0}})).

8. Disjoint Unions

Tagged sets can be used to de�nte disjoint unions (sums) of sets. Given sets X and Y
the copies {Inj0 x|x ∈ X} and {Inj1 y|y ∈ Y } are disjoint. This justi�es the de�nitional
axiom below for the constant setsum of type ιιι.

Axiom 8.1. setsum = (λXY.{Inj0 x|x ∈ X} ∪ {Inj1 y|y ∈ Y }).

We will write] as a left associative in�x operator corresponding to applying term
setsum.
Let X and Y be sets and f and g be (meta-level) functions (of type ιι). We can

combine the functions to give a function from X]Y that behaves like f on X and g on
Y . Let combine_funcs be a constant of type ιι(ιι)(ιι)ιι with the following de�nitional
axiom:

Axiom 8.2. combine_funcs = (λXY fgz.If (z = Inj0 (Unj z)) (f (Unj z)) (g (Unj z))).

Clearly from X] Y we can recover X and Y , so we can view disjoint unions as an
implementation of ordered pairs. (Ordered pairs of classes were represented as disjoint
unions by Morse [20].) To support this view of ordered pairs, we give constants for
the two projections. Let proj0 and proj1 be constants of type ιι with the following two
de�nitional axioms:

Axiom 8.3. proj0 = (λZ.{Unj z|z ∈ Z, ∃x.Inj0 x = z}).

Axiom 8.4. proj1 = (λZ.{Unj z|z ∈ Z, ∃y.Inj1 y = z}).

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 15

9. Binary Representation of Natural Numbers

In this section we introduce one new constant, binrep of type ιιι. The purpose of this
constant is to provide support for a binary representation of natural numbers (di�erent
from their representation as �nite ordinals). The de�nitional axiom for binrep is as
follows:

Axiom 9.1. binrep = (λXY.X] ℘Y).

Let us (temporarily) write |X| for the (�nite) cardinality of a set X. It is clear
that |℘Y | is 2|Y |. Hence |binrep X Y | = |X| + 2|Y |. The psuedorandomly generated
conjectures generated by Proofgold often make use of a binary representation of natural
numbers. Let us de�ne this as a function B taking natural numbers to closed terms.
The intention is that B(n) is a term that is interpreted as a set with cardinality n.
As a helper function, we will �rst de�ne Bi(n) as follows:

• Bi(0) := ∅
• Bi(1) := ℘(B0(i))
• Bi(2n+ 1) := binrep (Bi+1(n)) (B0(i)) for n > 0.
• Bi(2n) := Bi+1(n) for n > 0.

We then de�ne B(n) := B0(n).
We leave it to the reader to check that B(n) corresponds to a set of cardinality

n. Many pseudorandomly generated Proofgold conjectures will likely require lemmas
allowing one to infer B(n) has cardinality n.

10. Functions, Dependent Sums and Dependent Products

If we consider x to be the ordered pair of x and y, then we have the material to
represent functions as sets. We use the Aczel trace representation [2, 29, 18] of functions
instead of the more common graph representation. Let lam be a constant of type ι(ιι)ι
with the following de�nitional axiom:

Axiom 10.1. lam = (λX.λf : ιι.
⋃
x∈X {x] y|y ∈ f x}).

We will use the notation λx ∈ s.t for the term lam s (λx.t).
Note that λx ∈ s.t also represents the dependent sum Σx ∈ s.t, since it consists of

the pairs x] y where x ∈ s and y ∈ t (where x may be free in t). Hence if x /∈ F(t),
then λx ∈ s.t corresponds to the Cartesian product of s and t. Instead of simply using
notation for this special case, an extra constant is used. Let setprod be a constant of
type ιιι with the following de�nitional axiom:

Axiom 10.2. setprod = (λXY.(λx ∈ X.Y)).

We use × as a left associative in�x operator corresponding to applying term setprod.
Since we have a representation of functions as sets, we will also include a constant for

applying a function to an argument. Letap be a constant of type ιιι with the following
de�nitional axiom:

Axiom 10.3. ap = (λfx.{proj1 z|z ∈ f, ∃y.z = x] y}).

16 CHAD E. BROWN

We will in practice omit ap. That is, if s, t have type ι, then we write st to mean
ap s t. This is possible without misinterpretation since st would be ill-typed without
considering it notation for some other kind of term.
It is not di�cult to prove that a β-law holds when the argument is in the domain.

That is,
∀X.∀f : ιι.∀x ∈ X.(λx ∈ X.fx) x = fx.

In addition, if the argument is not in the domain, then the application operator returns
the empty set.

∀X.∀f : ιι.∀x.x /∈ X → (λx ∈ X.fx) x = ∅.
Applying a set X to 0 or 1 turns out to be the same as applying the functions proj0

or proj1 to X. Due to this coincidence we can de�ne a predicate recognizing disjoint
unions (i.e., ordered pairs) making use of application. Let setsum_p be a constant of
type ιo with the following de�nitional axiom:

Axiom 10.4. setsum_p = (λZ.(Z 0] Z 1) = Z).

We already have a constant equip that determines if two sets are equipotent (have
the same cardinality). By making use of] and × we can modify equip to test of two
sets X and Y have the same cardinality modulo the cardinality of a third set M . Let
equip_mod be a constant of type ιιιo with the following de�nitional axiom:

Axiom 10.5.

equip_mod = (λXYM.∃ZV. equip (X] Z) Y ∧ equip (V × Z) M
∨equip (Y] Z) X ∧ equip (V × Z) M).

For a �nite ordinal n, we consider an n-tuple to be a function (encoded as a set) with
domain n. Let tuple_p be a constant of type ιιo with the following de�nitional axiom:

Axiom 10.6. tuple_p = (λnZ.∀z ∈ Z.(∃i ∈ n.∃x.z = i] x)).

If n is a �nite ordinal and Z is a set, then tuple_p n Z means Z is an n-tuple. For
each i ∈ n, Z i (i.e., ap Z i) gives the ith component of the n-tuple. Note that 2-tuples
are the same as ordered pairs.
We next represent the dependent set of functions (as sets) determined by a domain

set X and a family Y (of type ιι) of codomain sets. Let Pi be a constant of type ι(ιι)ι
with the following de�nitional axiom:

Axiom 10.7. Pi = (λX.λY : ιι.{f ∈ ℘(λx ∈ X.
⋃

(Y x))|∀x ∈ X.f x ∈ Y x}).
We write Πx ∈ s.t as notation for Pi s (λx.t). The special case when x /∈ F(t) yields

exponents of sets (via simple function spaces). Let setexp be a constant of type ιιι with
the following de�nitional axiom:

Axiom 10.8. setexp = (λXY.Πx ∈ Y.X).

Before ending the section we introduce three more constants that make it easier to
work with sets of pairs and functions taking two arguments.
Let Sep2 be a constant of type ι(ιι)(ιιo)ι. We can use Sep2 to seperate pairs from a

set X and a family Y satisfying a (meta-level) relation R. The de�nitional axiom for
Sep2 follows.

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 17

Axiom 10.9. Sep2 = (λX.λY : ιι.λR : ιιo.{z ∈ (λx ∈ X.Y x)|R (z 0) (z 1)}).

Let set_of_pairs be a constant of type ιo. This predicate simply recognizes if a set
only contains pairs and has the following de�nitional axiom:

Axiom 10.10. set_of_pairs = (λX.∀x ∈ X.∃yz.x = (λi ∈ 2.If (i = 0) y z)).

Finally let lam2 be a constant of type ι(ιι)(ιιι)ι. The purpose of lam2 is to give
a representation as a set of a meta-level binary function f when its �rst argument is
restricted to a set X and its second argument is restricted to Y x (where x ∈ X is
the �rst argument). The representation is accomplished by Currying and using the lam
operator twice as is shown in the following de�nitional axiom:

Axiom 10.11. lam2 = (λX.λY : ιι.λf : ιιι.λx ∈ X.λy ∈ Y x.f x y).

11. Surreal Numbers

In this section we describe a number of constants related to Conway's surreal num-
bers [12] and their de�nitional axioms. These will give us the natural numbers yet again,
but the surreal version of each natural number n will be the �nite ordinal n, so the rep-
resentation is not new. This will extend the representation to include negative natural
numbers (so we have the integers) and the dyadic rational numbers. Since every set in
ι is hereditarily �nite, we do not obtain, e.g., the real numbers. However, real numbers
can be obtained by going higher in the type hierarchy and properly generalizing the
de�nitions at higher types. We will not follow elaborate on this here.
This is not the �rst formal version of surreal numbers. Mamane [19] formalized

surreal numbers in Coq and Obua [21] formalized Conway games and surreal numbers
in an extension of Isabelle/HOL called Isabelle/HOLZF.
There are actually two representations of surreal numbers considered. We call these

the external view and the internal view. The external view considers a surreal number
to be an ordinal α and a predicate P .7 The internal view gives a set representation
that remembers the α and which members of α satisfy P . As a consequence of these
two views there will generally be two constants (of di�erent types) for each concept.
We consider the external view �rst. Let PNoEq_ be a constant of type ι(ιo)(ιo)o.

The meaning of PNoEq_ α P Q is that P and Q agree on α. This is a way of saying
α and P specify the same surreal number as α and Q. The de�nitional axiom follows.

Axiom 11.1. PNoEq_ = (λα.λPQ : ιo.∀β ∈ α.P β ↔ Q β).

Let PNoLt_ be a constant of type ι(ιo)(ιo)o. The meaning of PNoLt_ α P Q is that
the surreal number speci�ed α and P is �less than� the surreal number as α and Q.
The de�nitional axiom follows.

Axiom 11.2. PNoLt_ = (λα.λPQ : ιo.∃β ∈ α.PNoEq_ β P Q ∧ ¬P β ∧Q β).

We can now generalize to surreal numbers speci�ed using di�erent ordinals. Let
PNoLt and PNoLe be constants of type ι(ιo)ι(ιo)o. The meaning of PNoLt α P β Q is

7In this section, α and β are not types, but instead are variables of type ι intended to be (�nite)
ordinals. The same de�nitions would make sense if the ordinals were not �nite.

18 CHAD E. BROWN

that the surreal number speci�ed by α and P is �less than� the surreal number speci�ed
by β and Q. The meaning of PNoLe α P β Q is that the surreal number speci�ed
by α and P is �less than or equal to� the surreal number speci�ed by β and Q. The
de�nitional axioms follows:

Axiom 11.3.

PNoLt = (λα.λP : ιo.λβ.λQ : ιo.PNoLt_ (α ∩ β) P Q
∨α ∈ β ∧ PNoEq_ α P Q ∧Q α
∨β ∈ α ∧ PNoEq_ β P Q ∧ ¬P β).

Axiom 11.4.

PNoLe = (λα.λP : ιo.λβ.λQ : ιo.PNoLt α P β Q ∨ α = β ∧ PNoEq_ α P Q).

Conway ?? de�nes surreal numbers as pairs of sets of surreal numbers (those on the
left and those on the right) with an ordering condition ensuring those on the left are
less than those on the right. With our external view we can consider a collection of
surreal numbers to be a value L of type ι(ιo)o where L α P implies α and P represents
a surreal number. In order to relate to Conway's de�nition it is useful to be able to take
such collections and close them downwards (for the left) or upwards (for the right). For
this purpose let PNo_downc and PNo_upc be constants of type (ι(ιo)o)ι(ιo)o with the
following de�nitional axioms:

Axiom 11.5.

PNo_downc = (λL : ι(ιo)o.λα.λp : ιo.∃β.ordinal β ∧ ∃q : ιo.L β q ∧ PNoLe α p β q).

Axiom 11.6.

PNo_upc = (λR : ι(ιo)o.λα.λp : ιo.∃β.ordinal β ∧ ∃q : ιo.R β q ∧ PNoLe β q α p).

We now pass to the internal view. Let us write β′ for the set SetAdjoin β {1}. Note
that no ordinal contains {1} as an element since {1} is not transitive. Hence if β is an
ordinal, then β′ 6= β and β = β′ \ {{1}}. If α and P give the external view of a surreal
number, then we include β in the internal view to record β ∈ α where P β holds and
include β′ to record values β ∈ α where P β does not hold. It is easy to see that if P β
holds for all β ∈ α, then α itself will provide the internal view of the surreal number.
Let SNoElts_ be a constant of type ιι with the following de�nitional axiom:

Axiom 11.7. SNoElts_ = (λα.α ∪ {β′|β ∈ α}).

The purpose of SNoElts_ α is to give a bounding set from which all elements of the
internal view of the surreal number speci�ed by α and P .
Let SNo_ be a constant of type ιιo. The meaning of SNo_ α (when α is an ordinal)

is the set of all (internal views of) surreal numbers speci�ed by α and P for some P .
The de�nitional axiom follows.

Axiom 11.8. SNo_ = (λαx.x ⊆ SNoElts_ α ∧ ∀β ∈ α.exactly1of2 (β′ ∈ x) (β ∈ x)).

Let PSNo be a constant of type ι(ιo)ι that is intended to coerce from the external
view to the internal view. The de�nitional axiom follows.

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 19

Axiom 11.9. PSNo = (λα.λp : ιo.{β ∈ α|p β} ∪ {β′|β ∈ α,¬p β}).

Let SNo be a constant of type ιo. The proposition SNo x should hold precisely when
x is (the internal view of) a surreal number (in HF).

Axiom 11.10. SNo = (λx.∃α.ordinal α ∧ SNo_ α x).

Each surreal number can be said to have a level (or birthday). This is obvious in the
external view: if α and P specify a surreal number, then α is its level. In the internal
view we can recover the level using the ε operator. (This could alternatively be done
by collecting the ordinals β that either occur in the form β or in the modi�ed form β′.)
Let SNoLev be a constant of type ιι with the following de�nitional axiom:

Axiom 11.11. SNoLev = (λx.ε (λα.ordinal α ∧ SNo_ α x)).

Note that from the internal view x we can now recover the external view by taking
α to be SNoLev x and taking P to be λβ.β ∈ x. We make use of this fact to internalize
the relations PNoEq_, PNoLt and PNoLe. Let SNoEq_ be a constant of type ιιιo with
the following de�nitional axiom:

Axiom 11.12. SNoEq_ = (λαxy.PNoEq_ α (λβ.β ∈ x) (λβ.β ∈ y)).

Let SNoLt and SNoLe be constants of type ιιo with the following de�nitional axioms:

Axiom 11.13. SNoLt = (λxy.PNoLt (SNoLev x) (λβ.β ∈ x) (SNoLev y) (λβ.β ∈ y)).

Axiom 11.14. SNoLe = (λxy.PNoLe (SNoLev x) (λβ.β ∈ x) (SNoLev y) (λβ.β ∈ y)).

12. Loops and Inner Mappings

We next consider a few constants and de�nitional axioms about loops with a focus
on The AIM Conjecture [17, 8].8 To start with, let binop_on be a constant of type
ι(ιιι)o. where binop_on X f means f is a binary operation on X. The de�nitional
axiom follows.

Axiom 12.1. binop_on = (λX.λf : ιιι.∀xy ∈ X.fxy ∈ X).

Next let Loop be a constant of type ι(ιιι)(ιιι)(ιιι)ιo. Here Loop X m b s e will mean
that X is a loop with binary operations m (multiplication), b (left division) and s (right
division) and identity element e. The de�nitional axiom follows.

Axiom 12.2.

Loop =
(λX.λmbs : ιιι.λe.

binop_on X m ∧ binop_on X b ∧ binop_on X s
∧(∀x ∈ X.(m e x = x ∧m x e = x))

∧(∀xy ∈ X.(b x (m x y) = y ∧m x (b x y) = y
∧s (m x y) y = x ∧m (s x y) y = x))).

8The AIM Conjecture is an open mathematics problem as of 2020.

20 CHAD E. BROWN

We will next consider an extension of Loop that includes reference to several de�n-
able functions. Most of these de�nable functions are families of inner mappings. The
exceptions are an associator function a and a commutator function K. Before giving
the constant and its de�nitional axiom we give an informal description of each of the
new functions.
Suppose Loop X m b s e holds. Below let x, y, z, w, u, v range over elements of X.

Following [17] let us write (x · y) for m x y, (x\y) for b x y and (x/y) for s x y.
The commutatorK x y of x and y is (y·x)\(x·y). It is easy to see that (y·x)·(K x y) =

x ·y and in particular K x y = e if and only if y ·x = x ·y. The associator a x y z of x, y
and z is (x·(y·z))\((x·y)·z). As with the commutator case (x·(y·z))·(a x y z) = (x·y)·z
and a x y z = e if and only if x · (y · z) = (x · y) · z.
The remaining functions we consider will correspond to inner mappings. We �rst

describe the three families of inner mappings T , L and R that are central to the dis-
cussion in [17]. These families of inner mappings are su�cient to generate the set of all
inner mappings. For each x ∈ X, Tx is the inner mapping taking u to x\(u · x). For
each x, y ∈ X, Lx,y is the inner mapping taking u to (y · x)\(y · (x · u)) and Rx,y is the
inner mapping taking u to ((u · x) · y)/(x · y). For x ∈ X there are four inner mappings
I1x, J

1
x , I

2
x and J2

x speci�ed as follows:

• I1xu = x · (u · (x\e)).
• J1

xu = ((e/x) · u) · x.
• I2xu = (x\u) · ((x\e)\e).
• J2

xu = (e/(e/x)) · (u/x).

In the de�nitional axioms below we will write T x u for Txu, L x y u for Lx,yu, R x y u
for Rx,yu, I

1 x u for I1xu, J
1 x u for J1

xu, I
2 x u for I2xu and J2 x u for J2

xu.
Let Loop_with_defs be a constant of type

ι(ιιι)(ιιι)(ιιι)ι(ιιι)(ιιιι)→ (ιιι)(ιιιι)→ (ιιιι)→ (ιιι)(ιιι)(ιιι)(ιιι)o.

The meaning of Loop_with_defs X m b s e K a T L R I1 J1 I2 J2 is that Loop X m b s e
holds and that K, a and T , L, R, I1, J1, I2 and J2 satisfy the equations given above.
Constant. The name

Axiom 12.3.

Loop_with_defs =
(λX.λmbs : ιιι.λe.λK : ιιι.λa : ιιιι.λT : ιιι.λLR : ιιιι.λI1J1I2J2 : ιιι.

Loop X m b s e
∧(∀xy ∈ X.K x y = b (m y x) (m x y))

∧(∀xyz ∈ X.a x y z = b (m x (m y z)) (m (m x y) z))
∧(∀xu ∈ X.T x u = b x (m u x)
∧I1 x u = m x (m u (b x e))
∧J1 x u = m (m (s e x) u) x
∧I2 x u = m (b x u) (b (b x e) e)
∧J2 x u = m (s e (s e x)) (s u x))

∧(∀xyu ∈ X.L x y u = b (m y x) (m y (m x u))
∧R x y u = s (m (m u x) y) (m x y))).

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 21

Suppose Loop_with_defs X m b s e K a T L R I1 J1 I2 J2 holds. As described
in [17] we know a loop is AIM (i.e., the inner mappings form an abelian group) if the
following six equations hold:

• Tx(Tyu) = Ty(Txu) for x, y, u ∈ X.
• Tx(Ly,zu) = Ly,z(Txu) for x, y, z, u ∈ X.
• Tx(Ry,zu) = Ry,z(Txu) for x, y, z, u ∈ X.
• Lx,y(Lz,wu) = Lz,w(Lx,yu) for x, y, z, w, u ∈ X.
• Lx,y(Rz,wu) = Rz,w(Lx,yu) for x, y, z, w, u ∈ X.
• Rx,y(Rz,wu) = Rz,w(Rx,yu) for x, y, z, w, u ∈ X.

We claim that The AIM Conjecture holds if the following two identities hold in every
AIM loop (where x, y, z, w, u range over elements of the loop):9

(1) K ((Lx,yu\e) · u) w = e
(2) a w ((e/u) ·Rx,yu) z = e

Assuming this is correct, then there are two possible kinds of counterexamples to The
AIM Conjecture. The �rst kind of counterexample contains a violation of the �rst
identity and the second kind of counterexample contains a violation of the second
identity. This is the motivation for the last two constants and de�nitional axioms of
this section.
Let Loop_with_defs_cex1 and Loop_with_defs_cex2 be constants of type

ι(ιιι)(ιιι)(ιιι)ι(ιιι)(ιιιι)(ιιι)(ιιιι)(ιιιι)(ιιι)(ιιι)(ιιι)(ιιι)o

with the following two de�nitional axioms:

Axiom 12.4.

Loop_with_defs_cex1 =
(λX.λmbs : ιιι.λe.λK : ιιι.λa : ιιιι.λT : ιιι.λLR : ιιιι.λI1J1I2J2 : ιιι.

Loop_with_defs X m b s e K a T L R I1 J1 I2 J2

∧∃uxyw ∈ X.¬(K (m (b (L x y u) e) u) w = e)).

Axiom 12.5.

Loop_with_defs_cex2 =
(λX.λmbs : ιιι.λe.λK : ιιι.λa : ιιιι.λT : ιιι.λLR : ιιιι.λI1J1I2J2 : ιιι.

Loop_with_defs X m b s e K a T L R I1 J1 I2 J2

∧∃uxyzw ∈ X.¬(a w (m (s e u) (R x y u)) z = e)).

The meaning of Loop_with_defs_cex1 X m b s e K a T L R I1 J1 I2 J2 is that
Loop_with_defs X m b s e K a T L R I1 J1 I2 J2 holds and the loop has a counterex-
ample of the �rst kind. Likewise Loop_with_defs_cex2 X m b s e K a T L R I1 J1 I2 J2

means Loop_with_defs X m b s e K a T L R I1 J1 I2 J2 holds and the loop has a
counterexample of the second kind. Such loops do exist. The only way the counterex-
ample would actually be a counterexample to The AIM Conjecture is if the loop were
AIM. We can now state The AIM Conjecture (for �nite loops) as two conjectures in

9A justi�cation for this is beyond the scope of this work.

22 CHAD E. BROWN

the HF theory:

∀X.∀mbs : ιιι.∀e.∀K : ιιι.∀a : ιιιι.∀T : ιιι.∀LR : ιιιι.∀I1J1I2J2 : ιιι.
Loop_with_defs_cex1 X m b s e K a T L R I1 J1 I2 J2

→ (∀xyu ∈ X.T x (T y u) = T y (T x u))
→ (∀xyzu ∈ X.T x (L y z u) = L y z (T x u))
→ (∀xyzu ∈ X.T x (R y z u) = R y z (T x u))

→ (∀xyzwu ∈ X.L x y (L z w u) = L z w (L x y u))
→ (∀xyzwu ∈ X.L x y (R z w u) = R z w (L x y u))
→ (∀xyzwu ∈ X.R x y (R z w u) = R z w (R x y u))

→ ⊥
and

∀X.∀mbs : ιιι.∀e.∀K : ιιι.∀a : ιιιι.∀T : ιιι.∀LR : ιιιι.∀I1J1I2J2 : ιιι.
Loop_with_defs_cex2 X m b s e K a T L R I1 J1 I2 J2

→ (∀xyu ∈ X.T x (T y u) = T y (T x u))
→ (∀xyzu ∈ X.T x (L y z u) = L y z (T x u))
→ (∀xyzu ∈ X.T x (R y z u) = R y z (T x u))

→ (∀xyzwu ∈ X.L x y (L z w u) = L z w (L x y u))
→ (∀xyzwu ∈ X.L x y (R z w u) = R z w (L x y u))
→ (∀xyzwu ∈ X.R x y (R z w u) = R z w (R x y u))

→ ⊥.
If both of these sentences are provable in HF, then The AIM Conjecture holds for all
�nite loops.

13. Combinators

The two constants and de�nitional axioms have to do with untyped combinatory
logic. This is a particularly simple language that turns out to provide a Turing complete
programming language.
Let combinator be a constant of type ιo and let combinator_equiv be a constant of

type ιιo. The meaning of combinator Z is that Z is a combinator, where combinators
are formed from two basic combinators K and S using a (syntactic) binary application
operation. The meaning of combinator_equiv Y Z is that Y and Z are equivalent as
combinators, up to combinatory conversion.
We will represent the two combinators K and S by speci�c distinct sets. Let K be

Inj0 ∅. Let S be Inj0 (℘∅). We will next represent the (syntactic) combinatory logic
application operation by pairing the function and argument (using]) and ensuring we
do not obtain K or S by using Inj1. Let Ap be the term

λY Z.Inj1 (Y] Z)

of type ιιι.
The de�nitional axiom for combinator ensures combinator is the least predicate con-

taining K and S and closed under Ap.

Axiom 13.1.

combinator = (λX.∀p : ιo.p K → p S → (∀Y Z.p Y → p Z → p (Ap Y Z))→ p X).

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 23

The de�nitional axiom for combinator_equiv ensures combinator_equiv is the least
congruence relation on combinator such that Ap (Ap K W) Z is equivalent to W and
Ap (Ap (Ap S W) Z) V is equivalent to Ap (Ap W V) (Z V).

Axiom 13.2.

combinator_equiv = (λXY.∀r : ιιo.per_i r
→ (∀Z.combinator Z → r Z Z)

→ (∀W1Z1W2Z2.combinator W1 → combinator Z1

→ combinator W2 → combinator Z2

→ r W1 W2 → r Z1 Z2

→ r (Ap W1 Z1) (Ap W2 Z2))
→ (∀WZ.r (Ap (Ap K W) Z) W)

→ (∀WZV.r (Ap (Ap (Ap S W) Z) V) (Ap (Ap W V) (Ap Z V)))
→ r X Y).

14. Conjectures as Part of Proofgold's Consensus Algorithm

The hash of each Proofgold block is included in a Litecoin transaction using the
script command OP_RETURN. With the exception of the genesis block, the transaction
id of the Litecoin transaction recording the previous Proofgold block is also included
in this OP_RETURN. This makes it easy to scan the Litecoin blockchain to determine
an outline of the Proofgold blockchain. When the Litecoin transaction is included in a
Litecoin block, the transaction id is hashed together the the Litecoin block id to provide
256 bits of information to use to generate the conjecture on which a bounty must be
placed using half of the block reward of the next Proofgold block. Each conjecture is
interpreted in the context of the HF theory we have just described.
The conjectures fall into one of several classes and we give a brief description of each

class below.10 Using the 256 bits Proofgold decides to attempt to make a conjecture of
one of the classes. Before starting the generation of the proposition within the class,
hashing is used to expand the 256 bits to 2048 bits. If less than 10 bytes are used in the
generation, it is considered a failure. If the generation process tries to use more than
2048 bits, it is also a failure. In the case of failure Proofgold falls back on the last class
(Diophantine style problems) which cannot fail by design.

14.1. Random. Conjectures in this class are generally not meaningful, but the choices
made during the generation are also not uniformly random. The conjecture must start
with at least two (possibly bounded) quanti�ers. When a term of type ι must be
generated and a bound variable is not being chosen, then half the time the binary
representation of a number between 5 and 20 is used, a quarter of the time the unary
representation of a number between 5 and 20 is used. In the remaining quarter of the
cases, half the time a unary function is chosen (leaving the argument to be generated),
a quarter of the term a binary function is chosen (leaving two arguments to be gener-
ated) and the remaining quarter some other set former is used (e.g., Sep). In case the

10A description can also be found at https://proofgold.org/rewardbounties.html which pro-
vided a starting point for the description here. More details are in the Proofgold source �le
checking.ml.

https://proofgold.org/rewardbounties.html

24 CHAD E. BROWN

generation seems to be running out of bits of information, then it restricts the choices
available.
There are three subclasses of random conjectures. The �rst kind is simply a sentence

constructed as roughly described above. The second kind is of the form ∀p : ιo.∀f : ιι.s
where s is generated as above but is allowed to use the (uninterpreted) unary predicate
p and unary function f . The third kind is of the form

∀xyz.∀f : ιι.∀pq : ιo.∀g : ιιι.∀r : ιιo.s

where s is a generated as above though it is allowed to use x, y, z, f, g to construct sets,
to use p, q, r to construct atomic propositions and is (mostly) disallowed from using the
constants from the HF set theory.

14.2. Quanti�ed Boolean Formulas (QBF). Conjectures in the QBF class are of
the form

Q1p1 : o. · · · .Qnpn : o.s↔ t

where 50 ≤ n ≤ 55, each Qi is ∀ or ∃ and s and t are propostions such that F(s) =
F(t) = {p1, . . . , pn}. The propositions s and t are generated using the same process
(but di�erent bits for making choices, of course). We describe the process below.
At each stage there is a set V of variables that need to occur free. Initially V =
{p1, . . . , pn}. If V has more than 4 variables, then it is randomly split into two sets V1
and V2 such that V = V1∪V2. It is not required that V1 and V2 are disjoint, but V1∩V2
may not have more than 3 variables. Now assume s1 is generated for V1 and s2 is V2.
Either s1 → s2, ¬(s2 → s1), or s1 ↔ s2 is generated to cover V .
Assume V has at most 4 variables, e.g., q1, . . . , qk with k ≤ 4. In this case the formula

generated is L1 → · · · → Lk → ⊥ where Li is either qi or ¬qi. This is essentially a
clause with k literals.

14.3. Set Constraints. One of the most challenging aspects of higher-order theorem
proving is instantiating set variables, i.e., variables of a type like ιo [3]. The only known
complete procedure requires enumeration of βη-normal terms of this type.
In order to describe the types involved in the set constraint conjectures as well as

the higher-order uni�cation conjectures we introduce some new terminology. We say a
type is ι-pure if there are no occurrences of o. We say a type is ι-relational if it has
the form it has the form α1 · · ·αno where each αi is ι-pure. Next note that we can view
such a type as a binary tree with the implicit function type arrow as the nodes. We
say a type has minimum depth n if in this tree view every branch has at least depth n
and say a type has maximum depth n if every branch has at most depth n.
Let V be a �nite set of variables. For P ∈ V of ι-relational type, we call a term a

V -atom with head P if it has the form P s1 · · · sn where each si has the appropriate
type and F(si) ⊆ V . A �exible V -atom is a V -atom with head P for some P ∈ V of
ι-relational type. A rigid V -atom is a term of the form s1 ∈ s2 where F(s1) ⊆ V and
F(s2) ⊆ V . (That is, the only rigid relation considered is the constant ∈ from the HF
theory.)
Let P be a variable of an ι-relational type β1 · · · βno and V be a set of variables with

P ∈ V . A lower bound constraint for P over V is of one of the forms (where z1, z2, z3, z4

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 25

are variables not in V)

∀z1 : γ1.∀z2 : γ2.∀z3 : γ3.∀z4 : γ4.ϕ

or
∀z1 : γ1.∀z2 : γ2.∀z3 : γ3.∀z4 : γ4.ψ → ϕ

or
∀z1 : γ1.∀z2 : γ2.∀z3 : γ3.∀z4 : γ4.ψ → ζ → ϕ

or
∀z1 : γ1.∀z2 : γ2.∀z3 : γ3.∀z4 : γ4.ζ → ϕ

where each γj is an ι-pure type with minimum depth 0 and maximum depth 4, ϕ is a
V ∪ {z1, z2, z3, z4}-atom with head P , ψ (if relevant) is a rigid V ∪ {z1, z2, z3, z4}-atom.
and ζ (if relevant) is a �exible V ∪ {z1, z2, z3, z4}-atom.
The notion of upper bound constrain is dual, but we include it explicitly for clarity.

An upper bound constraint for P over V is

∀z1 : γ1.∀z2 : γ2.∀z3 : γ3.∀z4 : γ4.ϕ→ ⊥
or

∀z1 : γ1.∀z2 : γ2.∀z3 : γ3.∀z4 : γ4.ϕ→ ψ

or
∀z1 : γ1.∀z2 : γ2.∀z3 : γ3.∀z4 : γ4.ψ → ϕ→ ζ

or
∀z1 : γ1.∀z2 : γ2.∀z3 : γ3.∀z4 : γ4.ϕ→ ζ

where γj, ϕ, ψ and ζ are as in the case of a lower bound constraint.
The set constraint conjectures are of the form

∀P1 : α1.∀P2 : α2.∀P3 : α3.∀P4 : α4.
ϕ1
1 → ϕ1

2 → ϕ2
3 → ϕ2

4 → ϕ3
5 → ϕ3

6 → ϕ4
7 → ϕ4

8 → ⊥
where each αi is an ι-relational type with minimum depth 2 and maximum depth 6 and
each proposition ϕij is a lower bound constraint for Pi over {P1, P2, P3, P4} if j is odd
and an upper bound constraint for Pi over {P1, P2, P3, P4} if j is even.
The positive version of the conjecture states that there is no solution to this collection

of set constraints. The negative version can be proven by giving a solution.

14.4. Higher-Order Uni�cation. Unlike �rst-order uni�cation, higher-order is un-
decidable. In spite of this Huet's preuni�cation algorithm [16] provides a reasonable
method to search for solutions. A great deal of research has been done on higher-order
uni�cation and is ongoing today [28].
The generated conjectures in this class are essentially higher-order uni�cation prob-

lems with eight �ex-rigid pairs and four variables to instantiate. The problems are
given in a universal form, so that the positive form states that there is no solution. The
negative form could be proven by giving a solution. In general the conjectures have the
form

∀X1 : α1.∀X2 : α2.∀X3 : α3.∀X4 : α4.
ϕ1
1 → ϕ1

2 → ϕ2
3 → ϕ2

4 → ϕ3
5 → ϕ3

6 → ϕ4
7 → ϕ4

8 → ⊥

26 CHAD E. BROWN

where αi is ι-pure with minimum depth 2 and maximum depth 6 and ϕij is a proposition
of the form described below.
Each ϕij is a proposition of the form

∀z1 : β1.∀z2 : β2.∀z3 : β3.∀z4 : β4.Xi s1 · · · sn = t

where each βk is an ι-pure type of minimum depth 0 and maximum depth 4 and t and
each sl are appropriately typed terms. The term t must be rigid, and speci�cally its
head must be either one of z1, z2, z3, z4 (requiring a projection in Huet's terminology)
or one of Inj1, Inj0 or setsum. The arguments the head of t are applied to are randomly
generated in the same way as the arguments s1, . . . , sn of Xi. Terms are generated in
their η-long form so that the important choices are always what to take as the head of
a term of type ι. The allowed heads when generating random terms are the constant
∅, the unary functions Inj1 and Inj0, the binary function setsum and any variables in
context (i.e., X1, X2, X3, X4, z1, z2, z3, z4 and any other variables that have been
introduced due to new λ-abstractions due to generating the long normal form).

14.5. Untyped Combinator Uni�cation. Since we are in a simply typed setting
the untyped combinators are encoded as sets as described in Section 13. The generated
conjectures are in the form of eight �ex-rigid pairs making using four variables to be
instantiated. Each conjecture is stated in a universal form that means there is no
solution. Proving the negation of the conjecture will usually mean giving a solution,
though given the classical setting it is also possible to provide multiple instantiations
and prove one must be a solution. (This was also the case for the previous two classes
of conjectures.) The conjectures have the form

∀X.combinator X → ∀Y.combinator Y → ∀Z.combinator Z → ∀W.combinator W →
ϕX1 → ϕX2 → ϕY3 → ϕY4 → ϕZ5 → ϕZ6 → ϕW7 → ϕW8 → ⊥

where ϕVi is a proposition giving a �ex-rigid pair with local variables and with V as the
head of the left. To be more speci�c each ϕVi has the form

∀x.combinator x→ ∀y.combinator y → ∀z.combinator z → ∀w.combinator w →
combinator_equiv (V v1 v2 v3 v4 s1 . . . sn) t

where each vi ∈ {x, y, z, w}, t is a random rigid combinator and each of s1, . . . , sn is a
random combinator. In this context a random rigid combinator is either K t1 or S t1
where t1 is a random combinator, or S t1 t2 where t1 and t2 are random combinators,
or v t1 · · · tn where v ∈ {x, y, z, w} and t1, . . . , tn are random combinators. A random
combinator is h t1 · · · tn where h ∈ {S,K,X, Y, Z,W, x, y, z, w} and t1, . . . , tn are
random combinators.
Each of these problems can be viewed as a �rst-order problem. In the �rst-order

variant we could assume everything is a combinator (so combinator can be omitted)
and use equality to play the role of combinator_equiv. It should generally be possible
to mimic the equational reasoning of a �rst-order proof in the set theory representation
by using appropriate lemmas about combinator and combinator_equiv.
Furthermore it should be possible to de�ne a notion of reduction and prove that if

two terms are equivalent via combinator_equiv, then they must have a common reduct.

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 27

This would allow one to prove the positive version of the conjecture (meaning there is
no solution).

14.6. Abstract HF Problems. The conjectures in the Abstract HF class are about
hereditarily �nite sets, but without assuming the full properties about the relevant
relations, sets and functions. We �x 24 distinct variables: r0, r1 and r2 of type ιιo, x0,
x1, x2, x3 and x4 of type ι, f0 and f1 of type ιι, g0, g1 and g2 of type ιιι and p0, p1,
p2, p3, p4, p5, p6, p7, p8, p9 and p10 of type ιo. Each of these variable has an intended
meaning which we record in a substitution θ. Let θ be the substitution with dom(θ)
being the set of these 24 variables such that

θ(r0) =∈ θ(r1) =⊆ θ(r2) = (λxy.x ∩ y = ∅) θ(x0) = 0 θ(x1) = 1

θ(x2) = 2 θ(x3) = 3 θ(x4) = 4 θ(f0) = ℘ θ(f1) = Sing

θ(g0) = binunion θ(g1) = binintersect θ(g2) = setminus θ(p0) = atleast2

θ(p1) = atleast3 θ(p2) = atleast4 θ(p3) = atleast5 θ(p4) = atleast6

θ(p5) = (λX.∃Y.Y ⊆ X ∧ (¬(X ⊆ Y) ∧ atleast6 Y)) θ(p6) = exactly2

θ(p7) = exactly3 θ(p8) = exactly4 θ(p9) = exactly5

θ(p10) = (λX.atleast6 X ∧ ¬atleast7 X).

Each generated conjecture is of the form

∀r0r1r2 : ιιo.∀x0x1x2x3x4.∀f0f1 : ιι.∀g0g1g2 : ιιι.∀p0 · · · p10 : ιo.
ϕ1 → · · · → ϕn → ψ.

The propositions ϕ1, . . . , ϕn, ψ are chosen from a set of 1229 speci�c propositions.11

If the 24 variables above are considered constants (and we let y range over Vι \
{x0, x1, x2, x3, x4}, then we can describe the �rst-order terms and propositions from
which the propositions are chosen. The �rst-order terms s, t range over

y | fi s | gi s t
and the �rst-order propositions ϕ, ψ range over

s = t | ri s t | ∀y ∈ s.ϕ | ∃y ∈ s.ϕ | ¬ϕ | ϕ→ ψ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ↔ ψ.

Note that all quanti�ers in ϕ are bounded. This, combined with the nature of θ, means
that each ϕ can be evaluated using the Ackermann interpretation of hereditarily �nite
sets as natural numbers [1]. Each of the 1229 speci�c propositions ϕ is such that θ̂ϕ
evaluates to true.
We �nally describe how the choices of the speci�c ψ and ϕ1, . . . , ϕn from the 1229

propositions in order to form the conjecture are made. First one of the 1229 is chosen
to be the conclusion ψ (using 11 bits to make the choice). Next, for the remaining 1228
propositions, 4 bits are used to give one chance out of 16 that the proposition should
be included among the hypotheses ϕi.

11The propositions are in the array ahfprops in checking.ml.

28 CHAD E. BROWN

Proving the conjecture means the chosen hypotheses contain a su�cient amount of
information to conclude ψ. To prove the negation of the conjecture requires �nding
an alternative substitution θ′ for which all the ϕi are still true (or, more precisely,
provable in HF) and yet ψ is false (its negation is provable in HF). This is not quite the
same as �nding a countermodel for a �rst-order sentence, since a �nite countermodel is
insu�cient. The countermodel must have all the hereditarily �nite sets in its universe
of discourse. In practice this is unlikely to make a di�erence except in corner cases, so
these conjectures can essentially be considered �rst-order problems.

14.7. AIM Conjecture Problems. There are two kinds of AIM Conjecture related
problems: one using Loop_with_defs_cex1 and one using Loop_with_defs_cex2. In
both cases the conjecture states that no loop exists with counterexamples of the �rst or
second kind satisfying a number of extra equations. The extra equations either say that
certain inner mappings commute (but not explicitly that all inner mappings commute)
or say that certain inner mappings have a small order (at most 5). The �rst kind of
extra equations will hold in all AIM loops while the second kind of extra equations will
not. The result are conjectures that, roughly speaking, are in the neighborhood of The
AIM Conjecture. In general each conjecture has the following form

∀X.∀mbs : ιιι.∀e.∀K : ιιι.∀a : ιιιι.∀T : ιιι.∀LR : ιιιι.∀I1J1I2J2 : ιιι.
P X m b s e K a T L R I1 J1 I2 J2

→ A1 → · · · → Al
→ O1 → · · · → Ok

→ ⊥
where P is either Loop_with_defs_cex1 or Loop_with_defs_cex2 and Ai and Oj are
(locally quanti�ed equations) described below. The value of l and k vary but we always
have l ≤ 20 and k ≤ 2.
There are �ve available inner mappings with one parameter: Tx, I

1
x, J

1
x , I

2
x and J2

x .
There are two available inner mappings with two parameters: Lx,y and Rx,y.
Each Ai is of the form ∀x1 . . . xnu.F (Gu) = G(Fu) where F and G are composites of

randomly chosen inner mappings using some of the parameters chosen from x1, . . . , xn.
In the simplest case n = 3, F is a F 1

x1
and G is G1

x2
◦ G2

x3
where F 1, G1 and G2 are

randomly chosen inner mappings with one parameter. For example, we could generate

∀x1x2x3u.Tx1(I1x2(J
1
x3
u)) = I1x2(J

1
x3

(Tx1u)).

In the most complex cases n = 8 and F is of the form F 1
x1,x2
◦ F 2

x3
◦ F 3

x4
and G is of

the form G1
x5,x6

◦ G2
x7,x8

where F 1, G1, G2 are randomly chosen inner mappings with
two parameters and F 2 and F 3 are randomly chosen inner mappings with with one
parameter.
The Oj conditions (if any are included) are of the form

∀x1 . . . xnu. F · · · (F︸ ︷︷ ︸
q

u) = u

where q ∈ {2, 3, 4, 5}, n ∈ {3, 4} and F is formed as a composite of randomly chosen
inner mappings with parameters from x1, . . . , xn as described above. This condition

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 29

states that the order of the inner mapping F is �nite and divides q (hence it can be at
most 5).
Proving the negation of one of these conjectures involves giving a �nite loop (im-

plemented in the HF set theory) and proving all the appropriate properties. Proving
one of the conjectures will often involve some equational reasoning that needs to be
replayed as a proof term. In an unusual case, there might only be in�nite counterex-
ample. In that case the conjecture might be provable by an inductive argument since
the conjecture says the proposition holds for all �nite loops. Except for such unusual
cases, these problems are �rst-order problems.

14.8. Diophantine Modulo. A Diophantine Modulo problem generates two polyno-
mials p and q in variables x, y and z and a number m (of up to 64 bits). The conjecture
is then as follows:

∀xyz.equip_mod (p]B(16)) q B(m) → ⊥.

In this form the conjecture says there is no choice of (hereditarily �nite) sets x, y and
z such that the cardinality of p plus 16 is the same as the cardinality of q modulo m.
The negation of the conjecture could be proven by giving appropriate x, y and z and
proving they have the property.
The generation of a polynomial is simple and cannot fail. Polynomials are always of

the form ∑
(i,j,k)∈{0,1,2,3}3

B(ni,j,k)x
iyjzk.

Here each ni,j,k is a natural number between 0 and 15 (using 4 bits of information, for
a total of 256 bits total).12 As a term, sums are represented using setsum (]), products
are represented using setprod (×) and exponents are represented using setexp. Special
cases are handled in special ways: if ci,j,k is 0, then the monomial is omitted; if ci,j,k
is 1, then the factor is omitted; if the exponent of a variable is 0, then the factor is
omitted; if the exponent of a variable is 1, then the exponent is omitted.

14.9. Diophantine. The �nal class is given by Diophantine problems (either equa-
tions or inequalities). Two polynomials p and q in variables x, y, z are generated (as
described above). Each polynomial uses 256 bits of information. One extra bit is used
to determine if the problem uses atleastp (for an inequality) or equip (for an equation).
In total, no more than 513 bits are required and so this case never fails. The generated
conjecture is then either of the form

∀xyz.atleastp (p]B(16)) q → ⊥

or

∀xyz.equip (p]B(16)) q → ⊥.

12A comment in the code in checking.ml claims this uses 128 bits, but this must be an error.

30 CHAD E. BROWN

15. Conclusion

We have described the HF theory built into the Proofgold network. After each
block Proofgold uses data from the Litecoin blockchain to pseudorandomly generate a
conjecture within the HF theory for a bounty to be placed in the next Proofgold block.
Resolving these conjectures is a form of delayed proof of work. By performing the
delayed proof of work users can gain stake in the system that can be used to participate
in the proof of stake part of the consensus algorithm.

Acknowledgment

This work has been supported by the European Research Council (ERC) Consolidator
grant nr. 649043 AI4REASON.

References

[1] Ackermann, W.: Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Mathematische Annalen
114(1), 305�315 (1937)

[2] Aczel, P.: On relating type theories and set theories. In: Altenkirch, T., Naraschewski, W., Reus,
B. (eds.) TYPES. Lecture Notes in Computer Science, vol. 1657, pp. 1�18. Springer (1998)

[3] Brown, C.E.: Solving for set variables in higher-order theorem proving. In: Voronkov, A. (ed.) Au-
tomated Deduction - CADE-18, 18th International Conference on Automated Deduction, Copen-
hagen, Denmark, July 27-30, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2392,
pp. 408�422. Springer (2002)

[4] Brown, C.E.: Reconsidering Pairs and Functions as Sets. Journal of Automated Reasoning 55(3),
199�210 (Oct 2015)

[5] Brown, C.E.: Mizar's Tarski-Grothendieck as a Theory in Proofgold. Tech. rep., Czech Technical
University in Prague (Aug 2020), http://grid01.ciirc.cvut.cz/~chad/pfgmizar.pdf

[6] Brown, C.E.: A theory supporting higher-order abstract syntax. Tech. rep., Czech Technical
University in Prague (Aug 2020), http://grid01.ciirc.cvut.cz/~chad/hoas/pfghoas.pdf

[7] Brown, C.E., P¡k, K.: A tale of two set theories. In: Kaliszyk, C., Brady, E.C., Kohlhase, A.,
Coen, C.S. (eds.) Intelligent Computer Mathematics - 12th International Conference, CICM 2019,
Prague, Czech Republic, July 8-12, 2019, Proceedings. Lecture Notes in Computer Science, vol.
11617, pp. 44�60. Springer (2019)

[8] Brown, C.E., P¡k, K.: AIM Loops and the AIM Conjecture. Formalized Mathematics 27(4) (2019)
[9] de Bruijn, N.G.: A survey of the project AUTOMATH. In: Seldin, J.P., Hindley, J.R. (eds.)

To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pp. 579�606.
Academic Press (1980)

[10] de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae (Pro-
ceedings) 34(5), 381�392 (1972)

[11] Church, A.: A formulation of the simple theory of types. The Journal of Symbolic Logic 5, 56�68
(1940)

[12] Conway, J.H.: On numbers and games, Second Edition. A K Peters (2001)
[13] van Heijenoort, J.: From Frege to Gödel. A Source Book in Mathematical Logic 1879�1931.

Harvard University Press, Cambridge, Massachusetts (1967)
[14] Hindley, J.R.: Basic Simple Type Theory, Cambridge Tracts in Theoretical Computer Science,

vol. 42. Cambridge University Press (1997)
[15] Howard, W.: The formulas-as-types notion of construction. In: Seldin, J., Hindley, J. (eds.)

To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. pp. 479�490.
Academic Press, New York (1980)

http://grid01.ciirc.cvut.cz/~chad/pfgmizar.pdf
http://grid01.ciirc.cvut.cz/~chad/hoas/pfghoas.pdf

HEREDITARILY FINITE SETS AND PROOFGOLD'S CONSENSUS ALGORITHM 31

[16] Huet, G.P.: A uni�cation algorithm for typed lambda-calculus. Theor. Comput. Sci. 1(1), 27�57
(1975)

[17] Kinyon, M.K., Vero�, R., Vojt¥chovský, P.: Loops with abelian inner mapping groups: An ap-
plication of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning
and Mathematics - Essays in Memory of William W. McCune. Lecture Notes in Computer Science,
vol. 7788, pp. 151�164. Springer (2013)

[18] Lee, G., Werner, B.: Proof-irrelevant model of CC with predicative induction and judgmental
equality. Logical Methods in Computer Science 7(4) (2011)

[19] Mamane, L.E.: Surreal numbers in Coq. In: Filliâtre, J.C., Paulin-Mohring, C., Werner, B. (eds.)
Types for Proofs and Programs. pp. 170�185. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

[20] Morse, A.P.: A Theory of Sets. Academic Press (1965)
[21] Obua, S.: Partizan Games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.)

ICTAC. Lecture Notes in Computer Science, vol. 4281, pp. 272�286. Springer (2006)
[22] Paulson, L.C.: Set theory for veri�cation: I. from foundations to functions. Journal of Automated

Reasoning 11, 353�389 (1993)
[23] Prawitz, D.: Natural deduction: a proof-theoretical study. Dover (2006)
[24] Russell, B.: The Principles of Mathematics. Cambridge University Press (1903)
[25] Sørensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Rapport (Københavns

universitet. Datalogisk institut), Datalogisk Institut, Københavns Universitet (1998)
[26] Su, B.: Mathcoin: A blockchain proposal that helps verify mathematical theorems in public.

IACR Cryptol. ePrint Arch. 2018, 271 (2018)
[27] Suppes, P.: Axiomatic Set Theory. Dover Books on Mathematics Series, Dover Publications (1972)
[28] Vukmirovic, P., Bentkamp, A., Nummelin, V.: E�cient full higher-order uni�cation. In: Ariola,

Z.M. (ed.) 5th International Conference on Formal Structures for Computation and Deduction,
FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference). LIPIcs, vol. 167, pp. 5:1�
5:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

[29] Werner, B.: Sets in types, types in sets. In: Abadi, M., Ito, T. (eds.) TACS. Lecture Notes in
Computer Science, vol. 1281, pp. 530�346. Springer (1997)

[30] White, B.: Qeditas: A formal library as a bitcoin spin-o� (2016), http://qeditas.org/docs/
qeditas.pdf

[31] Zermelo, E.: Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen
65, 261�281 (1908), English translation, �Investigations in the foundations of set theory� in [13],
pages 199�215

http://qeditas.org/docs/qeditas.pdf
http://qeditas.org/docs/qeditas.pdf

	1. Introduction
	2. Intuitionistic Higher-Order Logic
	3. Proper Axioms of HF
	4. Basic Cardinality
	5. Properties of Binary Relations
	6. Set Operations
	7. Recursion
	8. Disjoint Unions
	9. Binary Representation of Natural Numbers
	10. Functions, Dependent Sums and Dependent Products
	11. Surreal Numbers
	12. Loops and Inner Mappings
	13. Combinators
	14. Conjectures as Part of Proofgold's Consensus Algorithm
	14.1. Random
	14.2. Quantified Boolean Formulas (QBF)
	14.3. Set Constraints
	14.4. Higher-Order Unification
	14.5. Untyped Combinator Unification
	14.6. Abstract HF Problems
	14.7. AIM Conjecture Problems
	14.8. Diophantine Modulo
	14.9. Diophantine

	15. Conclusion
	Acknowledgment
	References

