MIZAR’S TARSKI-GROTHENDIECK AS A THEORY IN
PROOFGOLD

CHAD E. BROWN

ABSTRACT. We describe a Proofgold theory inspired by Mizar’s formulation of Tarski-
Grothendieck set theory. We further discuss ways to mimic various Mizar features
within the Proofgold theory.

1. INTRODUCTION

Mizar [2] is one of the oldest and longest lived systems for formalizing mathematics.
It is also one of the few systems based on set theory instead of some variant of type
theory. The Mizar Mathematical Library (MML) [I| at one time contained more for-
malized mathematics than any other system and is still one of the largest. If we wish to
translate the MML into the Proofgold blockchain, we first need to give an appropriate
Proofgold theory. A Proofgold theory consists of finitely primitive typed constants (ex-
tending the language of typed terms) and finitely many axioms (extending provability
of intuitionistic higher-order logic). More details about Proofgold theories can be found
in [1].

The Proofgold theory we need should form a foundation giving a form of Tarski-
Grothendieck set theory (TG), upon which the MML is based. Different versions of
TG in simple type theory have been discussed in recent publications. In [9] a version
of TG is given as an Isabelle object logic. In this case the object logic is intended to
model Mizar closely. A different version of TG forms the foundation of Egal [6, 5, 3.
An easy way to distinguish between Mizar’s style and Egal’s style is the treatment of
universes. In Mizar (Tarski-style) universes exist due to Tarski’s Axiom A [14]. In Egal
(Grothendieck-style) universes [3] exist due to a primitive operator giving a universe
(closed under the ZF constructors) containing a given set. As discussed in [6] the Mizar
style axioms can be proven in Egal and variants of the Egal axioms can be proven
in Mizar. This does not quite make the systems equivalent since the Egal version is
properly higher-order (so that, for example, Fraenkel’s Replacement axiom holds for
all higher-order formulas, not just first-order formulas), but does indicate that the two
systems behave similarly for most practical purposes.

When giving TG as a Proofgold theory we could use either formulation." We have
chosen to use a formulation close to Mizar’s simply due to Mizar being more widely
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!To be more precise, the Egal foundation has a choice operator at every type. This is not possible
in a Proofgold theory since Proofgold does not support polymorphism. Instead one could only give a
choice operator at the base type of sets, which is arguably enough for practical use cases.
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known and used than Egal. Unlike [9] we do not try to mimic Mizar too closely. For
example, we do not have a type of Mizar types. Instead we use the type of predicates
over sets as Mizar types.

2. M1zarR’S TG AS A PROOFGOLD THEORY

In this section we give a presentation of the Mizar TG theory in Proofgold. We will use
Megalodon’s syntax for the presentation instead of Proofgold’s, as Megalodon’s syntax
is more human readable. (Megalodon is a new generation of the Egal prover |6, 3|.)
Megalodon can be used to author documents that can be translated into Proofgold’s
format.

Let ¢ be the base type of individuals which are intended to range over sets. In ASCII
we write ¢ as set. As always we have a type o of propositions which we write in ASCII
as prop.

The Mizar system includes a the operator which chooses a member of a given Mizar
type. This is a form of the axiom of choice.” Note that Mizar types must be nonempty.
In our Proofgold theory we give a primitive the operator.

Parameter the : (set->prop)->set.

The axiom for this operator needs to have a condition that the predicate is nonempty
since unlike Mizar types there is (of course) an empty predicate.

Axiom the_ax : forall P:set->prop, forall x:set, P x -> P (the P).

The logic of Proofgold includes implication and universal quantification by default.
Furthermore, there is notation for equations and existential quantification at each type.
For a type a and terms s,t of type «, s = t is notation for Vp : aao.pst — pts, i.e.,

symmetric Leibniz equality [1]. For a type «, variable z of type o and a term s of type
o, Jx.s is notation for Vp : o.(Vx : a.s — p) — p. In order to state the remaining
axioms more naturally, we make the follow Russell-Prawitz style definitions [13, 11] of

the logical connectives L (False), - (not), A (and), V (or) and <> (iff). In addition
we declare infix notation for A, V and <. (The notation only affects the Megalodon
presentation and is note part of the Proofgold file.)

Definition False : prop := forall p:prop, p.
Definition not : prop -> prop := fun A:prop => A -> False.
Definition and : prop -> prop -> prop

:= fun A B:prop => forall p:prop, (A -> B -> p) -> p.
Infix /\ 780 left := and.
Definition or : prop -> prop -> prop

:= fun A B:prop => forall p:prop, (A -> p) -> (B -> p) -> p.
Infix \/ 785 left := or.
Definition iff : prop -> prop -> prop

:= fun A B:prop => (A -> B) /\ (B -> A).
Infix <-> 805 := iff.

2Without the the operator, Mizar already has a form of the axiom of choice as consequence of
Tarski’s Axiom A.
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The next axiom does not have a counterpart in Mizar and could be omitted. The
main reason we include it is so that we can prove an n-law for structures (see Section 6).
The axiom is propositional extensionality and says two propositions are equal if they
are equivalent. Since Mizar is essentially first-order, it is not possible to express an
equation between to propositions.

Axiom prop_ext : forall p q:prop, (p <->q) ->p = q.

The next typed primitive is membership of type wo. We will write € (in infix)

mathematically and :e (in infix) in ASCII. We also write Vz € s.t as shorthand for

Vx.x € s — t and write dx € s.t as shorthand for Jr.x € s At. We also use ¢ and /:e
for the negated versions of membership.

Parameter In:set->set->prop.

From this point on the primitives, definitions and axioms closely mimic Mizar’s
Tarski-Grothendieck Set Theory article [15] (although we present them in a different
order).

We define C of type 1o using membership in the obvious way. We write C in infix
and write c= (in infix) in ASCIIL.

Definition Subq : set -> set -> prop

:= fun A B => forall x :e A, x :e B.

The third primitive is of type .t and takes two sets x and y and forms the unordered
pair {z,y}. We use the notation {z,y} (also in ASCII) for this primitive applied to z
and .

Parameter UPair : set -> set -> set.
Notation SetEnum2 UPair.

We define the singleton operation of type w to take x and return {z,x}. We write
{z} (also in ASCII) for the singleton operation applied to .
Definition Sing : set -> set := fun x => {x,x}.
Notation SetEnuml Sing.

The final primitive is the union operation and has type . We write |J X for this
primitive applied to X.

Parameter Union : set->set.

In order to state Axiom A, we will need a notion of equipotence. In the MML this is
defined using Kuratowski pairs as ordered pairs. For this reason we define a Kuratowski
pair operation of type wue taking two sets x and y to the set {{z,y}, {z}}.

Definition KPair : set -> set -> set := fun x y => {{x,y},{x}}.

We now define the equipotence relation between two sets X and Y as holding when
there is a set Z that acts as the graph encoding of a bijection between X and Y.
Definition equip : set -> set -> prop := fun X Y =>

exists Z,

(forall x :e X, exists y :e Y, KPair x y :e Z)
/\ (forall y :e Y, exists x :e X, KPair x y :e Z)
/\ (forall x y z u, KPair x y :e Z -> KPair z u :e Z
> (x =2z <>y =u).
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This completes the set of typed constants and definitions. From now on we only state
axioms.
Set extensionality states two sets are equal if they have the same elements.

Axiom setext : forall X Y:set, (forall x, x :e X <->x e ¥Y) ->X =Y.
The axiom of unordered pairs states that « € {y, z} if and only if x =y or z = 2.
Axiom UPair_ax : forall x y z, x :e {y,z} <->x =y \/ x = z.

The union axiom states that x € |J X if and only if there is a set Y such that x € YV’
and Y € X.

Axiom Union_ax : forall X x, x :e Union X <-> exists Y, x :e Y /\ Y :e X.

The regularity axiom states that if X is nonempty then there is a member Y of X
such that X and Y are disjoint.

Axiom Regularity : forall X x, x :e X
-> exists Y :e X, not (exists x :e X, x :e Y).

Fraenkel’s replacement axiom is a scheme in first-order set theories (and in particular
in Mizar [15]) but can be stated as a single axiom in a higher-order setting. It says for
every set A (of type ¢) and every binary relation P (of type wc0), if P is functional, then
there is a set X such that z € X if and only if there is a y € A such that P relates y
to .

Axiom Replacement : forall A, forall P:set -> set -> prop,
(forall x yz, Pxy ->Pxz ->y =2)
-> exists X, forall x, x :e X <-> exists y :e A, P y x.

The final axiom is Tarski’s Axiom A. Axiom A is powerful enough to replace the
usual ZFC axioms of infinity, power set and choice. It states that for every set N there
is a Tarski universe M such that N € M.

Axiom Tarski_A : forall N, exists M,
N :e M
/\ (forall XY, X :eM ->Yc=X ->Y e M
/\ (forall X, X :e M -> exists Z :e M, forall Y, Yc=X > Y :e Z)
/\ (forall X, X ¢c= M -> equip X M \/ X :e M).

This completes the set of axioms for the theory and so completely describes the
intended Proofgold theory. Since the underlying logic is intuitionistic, it may be sur-
prising that there is no explicit axiom making the theory classical. The theory is
provably classical via a standard Diaconescu style argument (making use of the and
the_ax) [12, 10].

When publishing a theory into the Proofgold chain, a certain number of Proofgold
bars must be burned (the amount depends linearly on the serialized size of the theory).
The Mizar-inspired theory described here was published in a transaction® on August 4,
2020, that also burned 5.586 bars.

3Txid: f69d8c1530488832c630b6274cal86e16fc740d866575258012a032c05075d0a
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3. DEFINITIONS

There are several types of definitions supported by Mizar. We discuss the definitions
of attributes and functions, leaving modes (basic Mizar types) and adjectives (modifiers
on types) to Section 4.

Definitions of attributes are easily mapped to the contexts of Megalodon and Proof-
gold. Assume the Mizar attribute is defined by giving n typed variables x4, ..., x, each
of Mizar type ¢1, ..., ,. Here p; is considered as a predicate over sets (i.e., of type o)
and ¢; may contain free occurrences of zy,...,x;_1. The means keyword separates the
attribute being defined (on the left) from its definition. Its definition is formed from
preexisting language and so we can assume it can be translated as 1 of type o. For
the corresponding Megalodon/Proofgold definition, we define the attribute as having
type ¢---to (with n arguments) with definition Az - - - x,.1). Note that the types ¢; are
omitted entirely. The fact that the predicates must be provable in any context in which
the attribute is used is an invariant that would need to be externally maintained.

An early example of an attribute is empty defined in [7]. In Mizar syntax this is given
as follows:

definition

let X be set;

attr X is empty means

:Defl:

not ex x being set st x in X;
end;

An analogous Megalodon definition looks as follows:

Definition empty : set -> prop
:= fun X => forall x, x /:e X.

Obviously it would be closer to use not (exists x, x :e X), but the variants are
equivalent.

Some defined functions can be handled the same way as attributes, namely those
using the equals keyword. Functions can also be defined using the means keyword
where to the right of means is a proposition depending on a keyword it. These can
be handled by the the operator in Megalodon/Proofgold. Suppose there are n input
variables xq, ..., x, (of type ¢). We can translate the proposition to the right of means
as a proposition ¢ depending on z1,...,z, and an extra variable y of type ¢ (playing
the role of it). Now the new function can be defined as

Az - - xy.the (Ay.a)).

In Mizar one would need to prove this definition is well-formed. In Megalodon /Proofgold,
the definition can be made without proving it has the properties associated with be-
ing well-formed. However, proving those properties in Megalodon /Proofgold would be
essential in order to use the definition as intended.
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4. TYPES AND SETHOOD

Modes (defining basic Mizar types) can be handled in much the way attributes are
handled. Suppose the mode depends on variables xy, ..., z, (of Mizar types @1, ..., @n)
and holds when 1 holds for a variable y. (The y may be playing the role of the it key-
word in some mode definitions.) The mode itself would be translated as Azy - - - z,y.1).
An extra invariant of proving nonemptiness would need to be (externally) enforced. To
be precise, assuming the Mizar type of each x; corresponds to the predicate ;, the
nonemptiness property would be

Vri.p1 1 = - -V, pop 2, — Jy.1b.

One of the most used (dependent) types in the MML is Element of defined in [16].
By applying Element of to a set X, we obtain a type of elements of X (assuming
X is nonempty). Since all Mizar types must be inhabited, Element of X is defined
to contain “every” empty set if X is empty. In Mizar the definition looks as follows
(omitting proofs of correctness):
definition

let X;

mode Element of X means :Defl:

it in X if X is non empty otherwise it is empty;

end;
A corresponding Megalodon definition looks as follows:
Definition Element_of : set -> set -> prop

:= fun X x => x e X \/ empty X /\ empty x.
It would perhaps be closer to include a conjunct saying X is not empty in the first
disjunct, but the two variants are easily seen to be equivalent. The key theorem to prove
to maintain an invariant that predicates corresponding to Mizar types are inhabited is
the following:

Theorem Element_of_nonempty : forall X, exists x, Element_of X x.

This theorem is easy to prove by a case analysis (using excluded middle).

Adjectives take a Mizar type and return a refined Mizar type. This can be translating
by defining a corresponding operation of type (t0)co that takes a predicate and returns
a subpredicate (by conjoining the new property). In case the adjective depends on some
variables, the type may have the form ¢ - - - ¢(c0)co.

In some cases Mizar types are “small” in the sense that there is a set containing all the
objects satisfying the type as elements. Since Mizar types are considered as predicates,
the notion of being “small” can be defined as a predicate on predicates. We call this
setlike (of a predicate) here, but it is called sethood (of a type) in Mizar.
Definition setlike : (set -> prop) -> prop

:= fun P => exists A, forall x, x :e A <-> P x.
Every predicate can be coerced into being a set using the the operator.

Definition toset : (set -> prop) -> set
:= fun P => the (fun A => forall x, x :e A <-> P x).
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The set given by toset satisfies the expected property if the predicate satisfies the
setlike property.
Theorem setlike_toset : forall P:set -> prop, setlike P ->

forall x, x :e toset P <-> P x.

This theorem has been proven in Megalodon (starting from the theory in Section 2)
and published as part of a document in the Proofgold blockchain. All the remain-
ing definitions and theorems we describe have also been published into the Proofgold
blockchain.

Key examples of Mizar types that are small are those given by Element of. This is
recorded by the following Megalodon theorem:

Theorem setlike_Element_of : forall X, setlike (Element_of X).

It is also easy to prove that for nonempty sets X, toset is a one-sided inverse to
Element of.

Theorem setof_Element_of : forall X, “empty X -> toset (Element_of X) = X.

5. FRAENKEL TERMS

One way Mizar extends the traditional language of first-order logic is by allowing
some term level binders. In particular, so-called Fraenkel terms are permitted as terms
(of Mizar type set). These are written as

{s where 1 is ¢1,...,x, is v, : V}.

Here the types ¢, of the bound variables must be small. Considering ; as a predicate,
this means we need it to satisfy the setlike property. In Section 4 we have defined
a coercion toset that turns a predicate into a set, giving the expected set when the
predicate is small. We will make use of this here to translate each Fraenkel term as

ReplSep,, (toset ;) (Ax;.toset ¢y)
coo (Axy - wpogtoset ) (Axy - xp)) (A mp.S).

For practical purposes we limit ourselves to 1 < n < 7, but the pattern makes it clear
that the definition of ReplSep,, generalizes to arbitrary values of n.

We first need a replacement operator. To define this we first prove sets given by
replacing the elements of A with the values given by a meta-function F' : it exist. This
easily follows from Fraenkel’s replacement axiom.

Theorem Repl_ex : forall A:set, forall F:set -> set, exists B:set,
forall y, y :e B <-> exists x :e A, y = F x.

With the previous theorem we are justified in defining a Repl operator of type ¢(ct)e
using the.
Definition Repl : set -> (set -> set) -> set := fun A F =>

the (fun B => forall y, y :e B <-> exists x :e A, y = F x).
We use the notation {s|z € t} for Repl ¢ (Az.s). It is easy to prove (using the_ax and
Repl_ex) that the members of {Fz|r € A} are the expected members.

Theorem Repl_iff : forall A:set, forall F:set->set,
forall y:set, y :e {F x|x :e A} <-> exists x :e A, y = F x.
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Fraenkel’s replacement axiom also allows us to easily prove Zermelo’s separation
axiom.

Theorem Sep_ex : forall A:set, forall P:set -> prop, exists B:set,
forall x, x :e B <->x :e A /\ P x.

Using the we can define a Sep operator of type ¢(to)t

Definition Sep : set -> (set -> prop) -> set
:= fun A P => the (fun B => forall x, x :e B <->x :e A /\ P x).

We use the notation {z € s|i} for Sep s (Az.¢). It is easy to prove {x € s|¢} has the
right members.

Theorem Sep_iff : forall A, forall P:set -> prop,
forall x, x :e {x :e A|P x} <> x :e A /\ P x.

We next combine the replacement and separation operators as ReplSep of type ¢(c0)(ct)e.
We write {s|x € t,¢} for ReplSep t (Az.¢)) (Az.s).

Definition ReplSep : set->(set->prop)->(set->set)->set
:= fun A P F => {F xlx :e {z :e AIP z}}.

It should be clear that ReplSep can play the role of ReplSep;.
We can define ReplSep, by combining ReplSep with Repl and the union operation as
follows:

Definition ReplSep2 : set -> (set -> set) -> (set -> set -> prop)
-> (set -> set -> set) -> set
:= fun A B P F => Union {{F x yly :e B x, P x y} | x :e A}.

This generalizes to a scheme for defining ReplSep,, . ; from ReplSep,,, Repl and union.
For example, here is the definition of ReplSep, assuming the definition of ReplSep, has
already been made:

Definition ReplSep7 : set -> (set -> set) -> (set -> set -> set)

-> (set -> set -> set -> set) -> (set -> set -> set -> set -> set)

-> (set -> set -> set -> set -> set -> set)

-> (set -> set -> set -> set -> set -> set -> set)

-> (set -> set -> set -> set -> set -> set -> set -> prop)

-> (set -> set -> set -> set -> set -> set -> set -> set) -> set

:=fun ABCDEGHPF =

Union {ReplSep6 (B x) (C x) (D x) (E x) (G x) (Hx) (P x) (F x)|x :e A}.

6. STRUCTURES

Structure types are a different kind of Mizar type as those considered in Section 4. A
structure type in Mizar is given by sequence of typed labels. Fach of these labels gives
a function, called a selector, from structures to a value of the type corresponding to
the label. Structures generally are allowed to have more information than specified in
the structure type, allowing for future structure types to inherit from multiple previous
structure types. Structures may also be strict, essentially meaning they have no extra
information.
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In [9] Mizar structures are represented by partial functions (represented by sets) from
labels to values. Finite ordinals are used as labels, providing an infinite set of labels
that are provably distinct, but any such infinite set would suffice. Here we describe a
generalization of the approach to representing structures (and structure types) given
in [9].*

Let us begin by considering four simple Mizar structure types.

Example 6.1. I-sorted structures have only one label carrier associated with type
set. This means a 1-sorted structure determines a set and this set can be obtained by
applying the selector function carrier to a 1-sorted structure. In Mizar notation, the
1-sorted structure type is defined as follows:
definition

struct 1l-sorted(# carrier -> set #);
end;

Example 6.2. A ZeroStr structure is a 1-sorted structure with an additional piece of
information: an element of the carrier (or, more properly, a value of type Element
of applied to the carrier set of the structure). The label corresponding to this label is
ZeroF and ZeroF is also the name of the selector taking a ZeroStr structure X to the
corresponding value of type Element of X. In Mizar notation the ZeroStr structure
type 1s defined as follows:
definition

struct (1-sorted) ZeroStr

(# carrier -> set, ZeroF -> Element of the carrier #);
end;

Example 6.3. A OneStr structure is the same as a ZeroStr structure except the label
and selector function is given by OneF instead of ZeroF. The Mizar definition is the
obvious one:
definition

struct (1-sorted) OneStr

(# carrier -> set, OneF -> Element of the carrier #);
end;

It may be suprising that ZeroStr and OneStr structures are defined separately, as
clearly the two kinds of structures are essentially the same. However, by defining them
independently, we can combine them with multiple inheritance in the next example.

Example 6.4. A ZeroOneStr structure is both a ZeroStr and a OneStr. That is, we
have a carrier set and two elements (both of which might be the same). The selector for
the carrier set is carrier, the selector for the zero element is ZeroF and the selector
for the one element is OneF. The Mizar definition looks as follows:

4Karol Pak considered different ways of emulating Mizar structures in Isabelle and some of the
ideas presented here are inspired by ideas discussed by Pak in a talk in Prague in 2016 predating the
publication of [9].
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definition
struct (ZeroStr,OneStr)
ZeroOneStr(# carrier -> set,
ZeroF -> Element of the carrier,
OneF -> Element of the carrier #);
end;

For ease of explanation, from now on we only consider structures whose carrier set is
nonempty when convenient (so that having type Element of the carrier set is the same
as being a member of the carrier set). This allows us to essentially omit references to
Element of below.

Let us consider (mathematically) how these four kinds of structures would be repre-
sented in the manner considered in [9]. Labels correspond to finite ordinals, so suppose
we take 2 to represent the label carrier, 3 to represent the label ZeroF and 5 to repre-
sent the label OneF. Structures are partial functions from labels to appropriate values.
Let us assume that partial functions are represented as sets of Kuratoski pairs, written
[u,v]. That is, if the Kuratowski pair [u,v| is in the partial function, then the partial
function maps u to v. A 1-sorted structure would be any partial function X on w with
[2,U] € X for some U. A ZeroStr structure would be any partial function X on w with
2,U] € X and [3,y] € X for some U and y € U. A OneStr structure would be any
partial function X on w with [2,U] € X and [5,z] € X for some U and z € U. A
ZeroOneStr structure would be any partial function X on w with [2,U] € X, [3,y] € X
and [5,z] € X for some U and y,z € U. It is easy to see that every ZeroOneStr struc-
ture is both a ZeroStr and a OneStr and that every ZeroStr structure and every OneStr
structure is a 1-sorted structure. The three selector (meta-)functions can be written as
follows:

carrier := A\S.ap S 2
ZeroStr := AS.ap S 3
OneStr := AS.ap S 5

Here ap is application of a set level function to an argument. We assume ap gives
some arbitrary (unimportant) value (e.g., #)) when applied to an argument outside its
domain.

If we were to follow the same approach to representing structures, we would start by
defining finite ordinals and the ap function of type ccc. Each of our selectors would then
have type .. We instead will examine what abstract properties selectors of the form
AS.ap S n have and use this to define an orthogonal collection of selectors. We will
then use orthogonal collections of selectors to define structures and structure types.

Consider the two functions carrier := AX.ap X 2 and ZeroStr := A X.ap X 3 above.
For every pair of values u and v, there is a partial function S (namely {[2,u], [3,v]})
such that carrier S = u and ZeroStr X = v. Likewise, for every triple of values
u, v and w, there is a partial function X such that carrier X = u, ZeroStr X = v
and OneStr X = w. These previous two properties are clearly similar, although one
mentions pairs and the other mentions triples. We can unify them by specifying the
“tuple” of values we want the selectors to return by giving the selectors themselves as
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arguments of the “tuple” (making use of the fact that we are in a higher-order setting).
In other words, instead of giving a pair of values v and v, we give a single value x of
type (w)t such that = carrier is u and = ZeroStr is v. Now the relevant property of
the two selectors states that for every such x, there is a partial function X such that
carrier X = x carrier and ZeroStr X = x ZeroStr. In general, given a collection
F of type (wt)o, we say F is an orthogonal collection of selectors (ocs) if for every x
of type (ut)e there is a set X such that f X = x f for every f € F. Intuitively, we
consider (z f)fer to be an F-indexed family of values and the ocs condition means we
can always glue this family together into a single value X (of type ¢). It should be clear
that every collection of functions of the form AX.ap X n (where n ranges over w) will
be an ocs. However, we do not need to commit to using finite ordinals as labels or,
indeed, to using partial functions to represent structures at all.
In Megalodon we define ocs as follows:

Definition ocs : ((set -> set) -> prop) -> prop :=
fun F : (set -> set) -> prop =>
forall x : (set -> set) -> set, exists X : set,
forall f:set -> set, Ff ->f X =xf.

We can now define a generic constructor for structures mk struct that takes an ocs
F and a F-indexed family x and returns some set gluing the family together. We use
the the operator to choose the representative.

Definition mk_struct : ((set -> set) -> prop) -> ((set -> set) -> set) -> set
:= fun F:(set -> set) -> prop => fun x:(set -> set) -> set =>
the (fun X => forall f:set -> set, Ff ->f X =x f).

Assuming F is an ocs, we can prove that each selector f € F does return x f when
f is applied to the value given by mk struct.

Theorem ocs_mk_struct_prop : forall F:(set -> set) -> prop, ocs F ->
forall f:set -> set, F £ ->
forall x:(set -> set) -> set, f (mk_struct F x) = x f.

For strictness of structures, we simply need to know that it is a unique representive
giving the appropriate values. This can be defined by saying X is a strict F-structure
if it is the F-structure given by mk__struct applied to the F-indexed family Af.f X. In
Megalodon, the definition is given as follows:

Definition strict_struct_p : ((set -> set) -> prop) -> set -> prop
:= fun F:(set -> set) -> prop =>
fun X:set =>
X = mk_struct F (fun f => f X).

We can prove the following n law, making use of propositional extensionality in the
proof.

Theorem mk_struct_eta : forall F:(set -> set) -> prop, ocs F ->
forall X:set, mk_struct F (fun £ => f X)
= mk_struct F (fun f => f (mk_struct F (fun f => f X))).



12 CHAD E. BROWN

From the 7 law it is easy to prove that structures of the form mk_struct F (Af.f X)
are always strict. In essence, we can make every structure X into a strict F-structure
by applying this operation.

Theorem strict_mk_struct : forall F:(set -> set) -> prop, ocs F ->
forall X:set, strict_struct_p F (mk_struct F (fun f => f X)).

We consider two F-structures equivalent whenever they give the same values on all
the selectors f € F. It is easy to prove this is an equivalence relation (given F).
Definition equ_struct : ((set -> set) -> prop) -> set -> set -> prop :=

fun F:(set -> set) -> prop => fun X Y:set =>

forall f:set -> set, Ff ->f X =1f Y.

Let us finally consider how Examples 6.1, 6.2, 6.3 and 6.4 can be represented. We
start by opening a Megalodon section and declaring the carrier selector as a variable
(instead of defining it as above).

Variable carrier : set -> set.
Because we will reuse this variable in many contexts, we open a subsection.
Section struct_1lsorted_sec_b.

We locally define sels as the singleton collection containing carrier. This will play the
role of F for the definition of 1-sorted structures. We will assume as a local hypothesis
that sels is an ocs.”

Let sels : (set -> set) -> prop
:= (fun f:set -> set => f = carrier).
Hypothesis ocs_carrier : ocs sels.

We can now define the notions of 1-sorted structures and strict 1-sorted structures as
follows.

Definition struct_1sorted_p : set -> prop := fun X => True.
Definition strict_lsorted_p : set -> prop := fun X =>
struct_1lsorted_p X /\ strict_struct_p sels X.
We now close the section, removing the local definition of sels and local hypothesis
ocs _carrier from the context.

End struct_1sorted_sec_b.

We next turn to a unified version of Examples 6.2 and 6.3 as pointed structures. We
start by opening a new subsection and adding a selector variable pt. We also add a
local hypothesis that pt is a different function from carrier. We then locally define sels
to contain exactly these two selectors and add a local hypothesis that this forms an ocs.

Section struct_Ptd_sec.

Variable pt : set -> set.
Hypothesis carrier_not_pt: ~(carrier = pt).
Let sels : (set -> set) -> prop

5The local hypotheses play no role in the definitions made in this section, but are included to make
clear what assumptions would need to be made or proven when making use of such structures.
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:= (fun f:set -> set => f = carrier \/ f = pt).
Hypothesis ocs_Ptd : ocs sels.
We can now define pointed structures and strict pointed structures as follows.
Definition struct_Ptd_p : set -> prop := fun X => pt X :e carrier X.
Definition strict_Ptd_p : set -> prop := fun X =>

struct_Ptd_p X /\ strict_struct_p sels X.

We then close the subsection.
End struct_Ptd_sec.

The reader may be concerned that we may have trouble representing Example 6.4
since we combined Examples 6.2 and 6.3. However, the fact that we can vary the
collection F means we do have separate representations of Example 6.2 and Example 6.3
on demand.

To represent Example 6.4 we open a new subsection, declare two new selector function
variables, ZeroF and OneF', and assume they are different from carrier and each other.

Section struct_ZeroOne_sec.

Variable ZeroF : set -> set.

Variable OneF : set -> set.

Hypothesis carrier_not_ZeroF: ~(carrier = ZeroF).
Hypothesis carrier_not_OneF: ~(carrier = OneF).
Hypothesis ZeroF_not_OneF: ~(ZeroF = OneF).

We now locally define a collection of the three selectors.
Let sels : (set -> set) -> prop
:= (fun f:set -> set => f = carrier \/ f = ZeroF \/ f = OneF).
We add a local hypothesis that the set of all three is an ocs.
Hypothesis ocs_ZeroOne : ocs sels.
We can now define ZeroOneStr structures and precisely those that are both ZeroStr
structures and OneStr structures. Since struct_ Ptd, was defined in a section with a

variable pt that is now closed, we must explicitly give the argument to fill in this value.
We can use either ZeroF or OneF' and we make use of both in the definition below.

Definition struct_ZeroOne_p : set -> prop

:= fun X => struct_Ptd_p ZeroF X /\ struct_Ptd_p OneF X.
Definition strict_ZeroOne_p : set -> prop

:= fun X => struct_ZeroOne_p X /\ strict_struct_p sels X.

We finally close the subsection and section.

End struct_ZeroOne_sec.
End struct_1sorted_sec.
7. CONCLUSION

We have described a version of higher-order Tarski-Grothendieck set theory published
as a Proofgold theory. The axioms are relatively faithful to the Mizar formulation.
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