
Simple Difficult Problems for Automated

Theorem Provers

Chad E. Brown

Czech Technical University in Prague

Abstract. We describe a collection of simple first-order theorems about
hereditarily finite sets. In spite of their short presentation and obvious
theoremhood, they appear to difficult for current automated theorem
provers.

Keywords:

1 The Problem Set

We begin by describe the first-order set theoretic language in which the prob-
lems are stated. We assume an infinite set of variables x, y, z, Terms s, t are
generated according to the following grammar:

x|∅|℘(t)|{t}|s ∪ t|s \ t|adj(s, t)|s+

A term is closed if it has no variables. Formulas ϕ,ψ are generated as follows:

s = t|s ∈ t|s ⊆ t|disj(s, t)|atleast2(s)| · · · |atleast16(s)|¬ϕ|ϕ⇒ ψ|ϕ∧ψ|ϕ∨ψ|ϕ⇔ ψ|∀x.ϕ|∃x.ϕ

We write s 6= t, s /∈ t and s 6⊆ t for ¬(s = t), ¬(s ∈ t) and ¬(s ⊆ t), respectively.
We write 0 for ∅, 1 for 0+, 2 for 1+, 3 for 2+ and 4 for 3+. Sometimes we will
write s∪ {t} for adj(s, t) since these two terms are equal according to one of the
axioms below.

We take 25 first-order formulas as axioms.

A⊆: ∀xy.x ⊆ y ⇔ (forallz.z ∈ x⇒ z ∈ y)
Aext: ∀xy.x ⊆ y ⇒ y ⊆ x⇒ x = y
Adisj: ∀xy.disj(x, y) ⇔ ¬∃z.z ∈ x ∧ z ∈ y
A∅: ∀x.x /∈ ∅
A{·}: ∀xy.x ∈ {y} ⇔ x = y
A∪: ∀xy.x ∈ y ∪ z ⇔ x ∈ y ∨ x ∈ z
A\: ∀xy.x ∈ y \ z ⇔ x ∈ y ∧ x /∈ z
Aadj: ∀xy.adj(x, y) = x ∪ {y}
Anxt: ∀x.x+ = adj(x, x)
A℘: ∀xy.x ∈ ℘(y) ⇔ x ⊆ y
A≥2

: ∀x.atleast2(x) ⇔ ∃y.y ∈ x ∧ x 6⊆ ℘(y).
A≥n+1

: ∀x.atleastn+1(x) ⇔ ∃y.y ⊆ x ∧ atleastn(y) ∧ x 6⊆ y for n ∈ {2, . . . , 15}.

2 Chad E. Brown

Each of the problems consists of the 25 axioms above followed by one con-
jecture. The conjecture is always of one of five forms:

subq: s ⊆ t where s and t are closed.

nsubq: s 6⊆ t where s and t are closed.

disj: disj(s, t) where s and t are closed.

atleastn: atleastn(s) where s is closed and n ∈ {3, . . . , 16}
atmostn: ¬atleastn+1(s) where s is closed and n ∈ {2, . . . , 10}

In addition to knowing the s and t in the conjectures are closed, we also know
they evaluate to sets that are semantically of small rank. In every model satisfy-
ing the axioms above, the interpretations of s and t will be members of the in-
terpretation of ℘(℘(℘(℘(℘(∅))))). Using the Ackermann encoding of hereditarily
finite sets as a model [1], each s and t will evaluate to a number in {0, . . . , 65535}.

Table 1 indicates the number of problems in each of the five categories.

subq 19437 21.4%
nsubq 12662 13.9%
disj 23831 26.2%

atleast∗ 21918 24.1%
atmost∗ 13045 14.4%

Total 90893 100%

Table 1. Number of problems in each category

2 Preliminary ATP Results

We began by running two top first-order ATPs (automated theorem provers),
Vampire [6] and E [7] in CASC mode for 60 seconds on each of the problems.
We later also ran Prover9 for 60s on each problem with default settings. The
results are in Table 2.

Vampire E Prover9

subq 12371 (63.6%) 1067 (5.5%) 324 (1.7%)
nsubq 7925 (62.6%) 3566 (28.2%) 55 (0.4%)
disj 4402 (18.5%) 153 (0.6%) 0

atleast∗ 122 (0.6%) 15 (0.07%) 0
atmost∗ 20 (0.2%) 0 0

Total 24840 (27.3%) 4801 (5.3%) 379 (0.4%)

Table 2. First results using Vampire, E and Prover9

Simple Difficult Problems 3

In Table 3 we give a simple example from each category which neither Vam-
pire nor E could prove in CASC mode within 60s.

subq24,30 {2} ∪ {{1}} ⊆ {1} ∪ ({2} ∪ {{1}}+)
nsubq50,48 ℘(℘({1})) \ 1 6⊆ {{{1}}} ∪ ℘({1})

disj9,96 disj(1 ∪ 2, {℘({1})} ∪ {1}+)

atleast73 atleast3(1 ∪ {1}+)
atmost32 ¬atleast3(2)

Table 3. Simple examples not proven by Vampire or E in CASC mode in 60s

3 Including Enumeration Lemmas

Natural lemmas to include in the problems would be lemmas that list the mem-
bers of the sets in question. An example of such a lemma would be

∀x.x ∈ 2 ⇔ x = 0 ∨ x = 1.

Based on the conjecture we can refine such lemmas further into the two direc-
tions of implication and only include the direction that seems the most helpful.
Furthermore, a lemma like

∀x.x = 0 ∨ x = 1 ⇒ x ∈ 2

can be more naturally given as two lemmas: 0 ∈ 2 and 1 ∈ 2.
For all closed terms s used in the conjectures, we associate m closed terms

closed terms s1, . . . , sm where semantically (and deductively) s1, . . . , sm list out
all the m distinct members of s. We call

∀x.x ∈ s⇒ x = s1 ∨ . . . ∨ s = sm

the elimination lemma for s. We call each of the formulas si ∈ s an introduction

lemma for s.
Based on this idea we created modified versions of the 90895 problems in

which we included such lemmas as follows:

1. If the conjecture is s ⊆ t, we include the elimination lemma for s and the
introduction lemmas for t.

2. If the conjecture is s 6⊆ t, we include the introduction lemmas for s and the
elimination lemma for t.

3. If the conjecture is disj(s, t) we include the elimination lemmas for s and t.
4. If the conjecture is atleastn(s), we include the introduction lemmas for s.
5. If the conjecture is ¬atleastn(s), we include the elimination lemma for s.

We ran E over these modified versions in CASC mode for 60s. The results (com-
pared with the results without lemmas) is shown in Table 4. A significant im-
provement was seen only in the nsubq category, in which the results were almost
as good as Vampire’s results without lemmas.

4 Chad E. Brown

E with lemmas E without lemmas

subq 967 (5%) 1067 (5.5%)
nsubq 7597 (6%) 3566 (28.2%)
disj 405 (1.7%) 153 (0.6%)

atleast∗ 22 (0.1%) 15 (0.07%)
atmost∗ 0 0

Total 8991 (9.9%) 4801 (5.3%)

Table 4. E with and without lemmas

4 Preliminary Satelo Results

A different approach than adding lemmas is to use a theorem prover that builds
set theoretic reasoning into rules. A new theorem prover, Satelo, is under con-
struction that follows this principle. Satelo is a theorem prover for higher-order
set theory and is a fork of the higher-order theorem prover Satallax [4,3]. Pre-
liminary results running Satelo on 3 different modes is reported in Table 5.

mode0 modeb1 modeb2 modeb3 modeb4

subq 9944 (51.2%) 9912 (51%) 13368 (68.7%) 655 (3.4%) 974 (5%)
nsubq 106 (0.8%) 94 (0.7%) 3695 (29.2%) 537 (4.2%) 1218 (9.6%)
disj 5687 (23.9%) 5048 (21.2%) 10679 (44.8%) 368 (1.5%) 375 (1.6%)

atleast∗ 0 0 0 0 0
atmost∗ 0 0 21 (0.2%) 0 0
Total 15737 (17.3%) 15054 (16.5%) 27763 (30.5%) 1560 (1.7%) 2567 (2.8%)

Table 5. Satelo Results

Satelo ignores the 25 axioms and only works on the conjecture. The constants
∈, ⊆, ∅, {·}, ∪, \ and ℘ are treated as built in, the same way as logical constants
like ∨ and =. In addition to the usual tableau rules of Satallax [2], Satelo has set
theory rules used instead of the axioms A⊆, Aext, A∅, A{·}, A∪, A\ and A℘. These
set theory rules are shown in Figure 1. The remaining axioms are recognized as
giving definitions for disj, adj, + and atleastn. The axioms are deleted and every
occurrence of these names are expanded in favor of their definitions before search
begins.

mode0 uses the default flag settings for Satelo. The other modes differ from
the default flag settings in the following ways:

– modeb1 allows Satelo to produce simple first-order clauses (with existen-
tial variables) for which resolution with unification can be used to make
inferences.

– modeb2 delays working on sentences whose propositional literal has not
been set to true in the latest propositional assignment found by MiniSat [5].

Simple Difficult Problems 5

– modeb3 delays working of sentences which evaluate to true in the Acker-
mann encoding.

– modeb4 combines the two flag settings of modeb2 and modeb3.

Clearly modeb2 performs best on this problem set, even outperforming Vam-
pire.

Text

s = t

s ⊆ t | t ⊆ s
T⊆

s ⊆ t

∀x.x ∈ s ⇒ x ∈ t
T 6⊆

s 6⊆ t

w ∈ s, w /∈ t
w fresh

T∈{·}

s ∈ {t}

s = t
T/∈{·}

s /∈ {t}

s 6= t
T∈℘

s ∈ ℘t

s ⊆ t
T/∈℘

s /∈ ℘t

s 6⊆ t

T∈∪

s ∈ t1 ∪ t2

s ∈ t1 | s ∈ t2
T/∈∪

s /∈ t1 ∪ t2

s /∈ t1, s /∈ t2
T∈\

s ∈ t1 \ t2

s ∈ t1, s /∈ t2

T/∈\

s /∈ t1 \ t2

s /∈ t1 | s ∈ t2

Fig. 1. Satelo Set Theory Rules

References

1. Ackermann, W.: Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Mathema-
tische Annalen 114(1), 305–315 (1937)

2. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. Jour-
nal of Automated Reasoning 47(4), 451–479 (2011), dOI 10.1007/s10817-011-9233-2

3. Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR. LNCS, vol. 7364, pp. 111–117. Springer (2012)

4. Brown, C.E.: Reducing higher-order theorem proving to a sequence of sat problems.
Journal of Automated Reasoning 51(1), 57–77 (Mar 2013)

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT. LNCS, vol. 2919, pp. 502–518. Springer (2003)

6. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina,
N., Veith, H. (eds.) CAV. LNCS, vol. 8044, pp. 1–35. Springer (2013)

7. Schulz, S.: System Description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) Proc. of the 19th LPAR, Stellenbosch. LNCS, vol. 8312. Springer (2013)

	Simple Difficult Problems for Automated Theorem Provers
	The Problem Set
	Preliminary ATP Results
	Including Enumeration Lemmas
	Preliminary Satelo Results

