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Abstract

to do

1 Introduction

A preliminary proposal for SMT-LIB Version 3.0 was recently published online [?]. According to
this proposal, there are plans to extend SMT in serious ways, essentially bringing an expressive
power somewhere between Church’s simple type theory [?] (by including arrow types) and the
Calculus of Inductive Constructions [?, ?, ?] (by including dependent types and inductively
defined types). In addition, a working group on SMT proofs was announced [?] with the goal
of developing a standard for “producing independently checkable proofs.” Of course, having
a standard notion of proof for SMT3 will require clarifying the intended semantics of SMT3
so that there is precision about what sets of formulas should be unsatisfiable (so there might
be a “proof” of inconsistency) or satisfiable (so there might be a “model”). We consider
the possibility of using higher-order set theory via the well-known Werner-Aczel semantics
of Calculus of Inductive Constructions [] to provide both a clear semantics and a notion of
checkable proof that is likely to be sufficient for SMT3 as well as possible future extensions. We
also give examples to demonstrate the feasability of the approach.

2 Models and Proofs in General

In the best case scenario a logic provides a clear definition of propositions, a rigorous definition
of when a proposition is provable and a class of interpretations with a satisfaction relation. A
proposition is considered valid if it is true in every interpretation in the class. The logic satisfies
soundness and completeness if provability coincides with validity. The most well-known case
is classical first-order logic with any number of proof systems and interpretations given by
Tarski-style semantics.

Church’s simple type theory provides another example of such a logic. In Church’s original
paper [?] there is a clear definition of types, terms (some of which are propositions) and a Hilbert
style proof system. Henkin [?] later gave a notion of semantics for which a completeness result
could be proven. (Technically Henkin’s interpretations were not all sound with respect to
Church’s functional extensionality axiom, but this was corrected by Andrews [?].) An equality-
based version of Church’s simple type theory with a Hilbert style proof system and a notion
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of interpretation (called general models) following the Henkin-Andrews approach is presented
in [?]. Furthermore in [?] one can find proofs of soundness, completeness and the usual results
associated with first-order logic such as the Lowenheim-Skolem Theorem and the Compactness
Theorem.

For more serious extensions of Church’s simple type theory – such as the Calculus of Induc-
tive Constructions – there does not seem to be an effort to create a Henkin-Andrews notion
of interpretation for which one could prove soundness and completeness. Instead research into
semantics for type theories has tended to go in the direction of category theory [?, ?] and the
most interesting interpretations are not classical.

In terms of soundness alone, there is one well-known set theoretic interpretation of type
theories like the Calculus of Inductive Constructions. The interpretation is classical, extensional
and satisfies proof irrelevance.1 It was described by Werner [?] and Aczel [?] with more details
found in the works of Werner, Lee and Barras [?, ?]. In this model, the universe of propositions is
interpreted as a two element set – one of which is empty (having no proofs) representing “false”
and the other being a singleton (having one proof) representing “true.” Being a two element set
makes it essentially the same as the interpretation of the type of booleans, as seems to be the
intended treatment of propositions as booleans in SMT. Types are interpreted as sets (including
the empty set) which live in some universe closed under various set theoretic operations. Coq
is a well-known proof assistant based on the Calculus of Inductive Constructions (CIC) and
each type universe is closed under the formation of (dependent) function types and inductively
defined types. The Werner-Aczel style of interpretation would interpret each of Coq’s universes
as a set U closed under the corresponding set-theoretic operations (e.g., if A and B are in the
set U , then the set BA of functions is in the set U).

An alternative to attempting to obtain a Henkin-Andrews style semantics for which sound-
ness and completeness can be proven is to simply take the standard set theoretic semantics
but allow the model of the underlying set theory to change. That is, instead of defining a
proposition as valid if it is true in every standard set theoretic interpretation, one could define
it as being valid if it is true in every standard set theoretic interpretation living in a model of,
say, first-order ZFC. Validity would then become recursively enumerable again and we clearly
have a complete proof system (given by any proof system for first-order ZFC). We explore this
possibility in this paper, except we use higher-order Tarski Grothendieck (HOTG) as described
in [?] instead of first-order ZFC. The reason for using higher-order instead of first-order is to
make the theory finitely axiomatizable. (We still obtain complete calculi via Henkin-Andrews
semantics.) The reason for using Tarski Grothendieck instead of Zermelo Fraenkel is to ensure
we have sufficient set theoretic universes for interpreting the type theoretic universes of CIC.
For more information, a longer discussion is in the unpublished paper [?], from which some of
the material form this article was taken.

3 Set Theory

Let us consider the possibility of simply using a Werner-Aczel style (classical, extensional, proof
irrelevant) interpretation of SMT3 and take proofs to be proofs of the resulting set theoretic
propositions. Since type theory is the dominant paradigm in interactive theorem proving at
the moment, the possibility of using set theory might be dismissed out of hand. A common
objection is that set theory requires infinitely many axioms, though this is no longer true if
one works in a slightly stronger set theory than first-order ZFC axiomatized in Church’s type

1Proof irrelevance means all proofs of a given proposition are equal.
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theory. Furthermore, a natural deduction proof system for Church’s type theory has a well
known notion of proof term. To make the case that the option of using set theory should at
least be considered, we assert three claims.

Claim 1: Set theory has been the most commonly accepted foundation of mathematics for
over a century, and continues to remain so.

Claim 2: Church’s simple type theory is a concise language extending first-order logic in
which many set theories have a finite axiomatization.

Claim 3: The Curry-Howard correspondence [?] gives a well-understood notion of proof
term for a natural deduction proof system for an appropriate presentation of Church’s simple
type theory.

Together these assertions are intended to make clear that using proof terms for a formal set
theory is based on a long history and does not require novel ideas. The first axiom system for set
theory dates back to Zermelo in 1908 [?] and even the addition of Tarski universes dates back to
1938 [?]. A typical complaint about set theory is that it has no finite first-order axiomatization,
and so one might think schemes are required. However, if we pass from first-order logic to
Church’s type theory it becomes easy to write second-order axioms that would otherwise be
schemes of infinitely many first-order axioms [?, ?, ?, ?].2 Church’s type theory dates back to
1940 [?] and Henkin’s completeness result dates back to 1950 [?]. As mentioned above, Church’s
type theory satisfies the usual first-order properties (relative to Henkin-Andrews semantics), so
using it as the underlying logic instead of first-order logic is not such a radical change. Finally
we note that the earliest proof checker, AUTOMATH [?, ?], dates back to 1968. AUTOMATH
represented proofs using a Curry-Howard style proof representation (independently created by
de Bruijn). In summary, all the ideas for having a clear, simple formulation of set theory (with
a finite presentation) – including a notion of checkable proofs – are over half a century old.
They are mature, well-understood ideas. The worst one could say about some of the ideas is
that they may be out of fashion at the moment, but fashion is hardly a reason to dismiss the
ideas.

It is certainly conceivable that proof terms for propositions obtained by translating from
SMT3 problems to set theory via the Werner-Aczel approach might turn out to be impractical,
either because the proof terms are too large or because their correctness is overly difficult to
check. In order to make a preliminary judgment about the practicality of the approach, let us
consider a few examples.

4 Examples

We now consider a few examples. All the examples will only use features of SMT2. In each
case we will show the result of translating the problem to a formal set theory and note there is
either a formal proof of the set theoretic proposition or a formal proof of its negation. We briefly
describe the proofs in each case. For the formal set theory we will use the Megalodon system3

(the successor to the Egal system [?]). Megalodon can also produce Proofgold (Curry-Howard
style) proof terms4 presented in a simple to parse prefix notation.5 While the Proofgold checker
can be used for type checking and proof checking the data, we claim that it is straightforward to
implement an independent proof checker. We allow ourselves to freely use previous definitions

2These second-order axioms are technically stronger than the first-order versions, but this is of no concern
here.

3http://grid01.ciirc.cvut.cz/~chad/megalodon-1.8.tgz.
4https://prfgld.github.io
5The full data is available at http://grid01.ciirc.cvut.cz/~chad/smtsempfs.tgz.
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or previously proven results (if they have been previously proven in Megalodon and published
in Proofgold documents). That is, we do not need the proof term to contain a justification back
to the axioms of set theory, but only back to previously proven results.

We will only make use of the SMT2 sorts for booleans, integers and arrays. The intended
interpretations of these types are given by the SMT-LIB Standard: Version 2.6 [?] (in text
form) as follows.

• Booleans (Page 37 of [?]):

"For every expanded signature Sigma, the instance of Core with that

signature is the theory consisting of all Sigma-models in which:

- the sort Bool denotes the set {true, false} of Boolean values;

- for all sorts s in Sigma,

- (= s s Bool) denotes the function that returns true iff its two

arguments are identical;

- (distinct s s Bool) denotes the function thatreturns true iff its

two arguments are not identical;

- (ite Bool s s) denotes the function thatreturns its second

argument or its third depending on whether its first argument is true

or not;

- the other function symbols of Core denote the standard Boolean

operators as expected."

The obvious two element set to take as the interpretation of the type of booleans is the
ordinal 2 = {0, 1} with 0 interpreting false and 1 interpreting true.

• Integers (Page 38 of [?]):

"For every expanded signature Sigma, the instance of Ints with that

signature is the theory consisting of all Sigma-models that interpret

- the sort Int as the set of all integers,

- the function symbols of Ints as expected."

We fix a set theoretic representation of integers (described below) and use this fixed set
to interpret the type of integers and the relevant operations.

• Arrays (Page 39 of [?]):

"For every expanded signature Sigma, the instance of ArraysEx with

that signature is the theory consisting of all Sigma-models that

satisfy all axioms of the form below, for all sorts s1, s2 in Sigma:

(forall ((a (Array s1 s2)) (i s1) (e s2))

(= (select (store a i e) i) e))

(forall ((a (Array s1 s2)) (i s1) (j s1) (e s2))

(=> (distinct i j) (= (select (store a i e) j) (select a j))))

(forall ((a (Array s1 s2)) (b (Array s1 s2)))

(=> (forall ((i s1)) (= (select a i) (select b i))) (= a b)))"

It is not difficult to see that a set satisfying the last axiom will be isomorphic to a set of
functions and in the isomorphic representation select can be assumed to be functional
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application. We will apply this simplification below. The only remaining condition is that
the set of functions is closed under the store function which (possibly) changes the value
of the function on one input.

4.1 Induction

As a first simple example we consider induction on the natural numbers. Here the natural
numbers are considered as a predicate over the sort Int.

In SMT2 format we can assert induction fails (which should be unsatisfiable) by giving a
predicate p which holds for 0 and is closed under successor but does not hold for all integers
n ≥ 0. Here is the SMT2 specification:

(declare-fun p (Int) Bool)

(assert (p 0))

(assert (forall ((?n Int)) (=> (<= 0 ?n) (=> (p ?n) (p (+ ?n 1))))))

(assert (not (forall ((?n Int)) (=> (<= 0 ?n) (p ?n)))))

To translate this into a set theoretical statement, we must give a specific set representing
integers. For natural numbers a reasonable option is to take the finite ordinals (the members of
ω). As part of a formalization of Conway’s surreal numbers [?] we also have a − operation on
all surreal numbers (including ordinals). The details are not important here, but it is sufficient
to note that −0 = 0, −n /∈ ω if n ∈ ω and − − x = x for all surreal numbers x. We take int
to be the set ω ∪ {−n|n ∈ ω} and use int as the fixed interpretation of the sort Int. In the
Megalodon preamble file we use this definition appears as follows:

Definition int : set := omega :\/: {- n|n :e omega}.

We also have a binary operation + on surreal numbers which behaves as expected on int,
as well as orderings < and ≤ on surreal numbers. In general we will not give details about
definitions unless they are relevant. We will only state some relevant properties we use, but
emphasize that all properties we use have been previously proven in Megalodon and published
into the Proofgold chain. There are no goals left open.

We have chosen to locally define bp as follows:

Let bp : set -> prop := fun b => 0 :e b.

We briefly consider the behavior of bp when applied to booleans (members of the set {0, 1}).
The negation of bp 0 is 0 /∈ 0 which is provable, so bp 0 acts as the false proposition. On the
other hand bp 1 is 0 ∈ 1 which is provable, so bp 0 acts as the true proposition. Such local
definitions act more as notation that is translated away. Other definitions would also work.

The statement of the set theoretic translation of the SMT2 problem appears as follows in
Megalodon:

Theorem example1ind_unsat:

forall p :e Bool :^: int,

bp (p 0)

-> (forall n :e int, 0 <= n -> bp (p n) -> bp (p (n + 1)))

-> ~(forall n :e int, 0 <= n -> bp (p n))

-> False.

Essentially that statement says the three (translated) assertions lead to a contradiction.
Note that since p 0 is a boolean (a set which is a member of {0, 1}), the coercion bp is used to
create the corresponding proposition whenever necessary.

5
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The proof in Megalodon proceeds as follows: we assume p is in the set 2int and assume
the three properties hold. In the preamble there is a predicate nat p that holds for the finite
ordinals. A previously proven induction principle is included:

nat_ind : forall p:set->prop,

p 0

-> (forall n, nat_p n -> p n -> p (ordsucc n))

-> forall n, nat_p n -> p n.

This induction principle will form the core of the current proof.
We first prove nonnegative integers satisfy nat p.

claim L1: forall n :e int, 0 <= n -> nat_p n.

The proof of this claim relies on results about surreal numbers, the − operation and the <
and ≤ relations.

We next prove n+ 1 = ordsucc n for n satisfying nat p.

claim L2: forall n, nat_p n -> n + 1 = ordsucc n.

The proof of this claim uses previously proven results relating the behavior of the surreal
number operation + on natural numbers.

We can now prove the most important subclaim:

claim L3: forall n, nat_p n -> bp (p n).

This claim is proven using nat ind and L2 as well as a variety of results about the behavior
of natural numbers as surreal numbers relative to the relations < and ≤.

From the first and third claim it is easy to obtain a proof

∀n ∈ int.0 ≤ n→ bp (p n)

contradicting the last assumption of the problem and leading to a proof of False as desired.

4.2 Pigeonhole

Our second example will be two versions of the Pigeonhole Principle. We use arrays from
integers to integers (with some constraints) to play the role of functions from finite ordinals
to finite ordinals. In the first version we will state that every array acting as a function from
{0, . . . , n} to {0, . . . , n − 1} is not injective. In SMT2 format we assert the negation of this
statement as follows:

(assert

(not

(forall

((?n Int))

(=> (>= ?n 0)

(forall

((?f (Array Int Int)))

(=> (forall ((?i Int))

(=> (and (<= 0 ?i) (<= ?i ?n))

(and (<= 0 (select ?f ?i)) (< (select ?f ?i) ?n))))

(exists ((?i Int) (?j Int))

(and (<= 0 ?i) (< ?i ?j) (<= ?j ?n)

(= (select ?f ?i) (select ?f ?j))))))))))

6
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In order to translate this SMT2 problem into a statement of formal set theory we must
interpret arrays. We will translate to a statement that universally quantifies over appropriate
interpretations of arrays. An interpretation of arrays is a (meta-)function Array taking two
sets and returning a set satisfying the following property:

Definition Array_interp : (set -> set -> set) -> prop

:= fun Array =>

(forall X Y, Array X Y c= Y :^: X)

/\ (forall X Y, forall f :e Array X Y, forall x :e X, forall y :e Y,

(fun u :e X => if u = x then y else f u) :e Array X Y).

That is: for sets X and Y , Array X Y must be a set of functions from X to Y that is closed
under changing one value.6

Translating this to the formal set theory of Megalodon we have the following theorem:

Theorem PigeonHoleArrays_1_unsat :

forall Array:set -> set -> set,

Array_interp Array ->

~(forall n :e int, 0 <= n ->

forall f :e Array int int,

(forall i :e int, 0 <= i /\ i <= n ->

0 <= f i /\ f i < n)

-> (exists i j :e int, 0 <= i /\ i < j /\ j <= n /\ f i = f j))

-> False.

Again − is the unary minus on surreal numbers and < and ≤ are relations on surreal
numbers. In this case there are a few facts about integers which had not been previously
proven, so we proved them before proving the theorem above. Here we simply state these
results:

Theorem NegIntNat : forall x :e int, x < 0 -> nat_p (- x).

Theorem PosIntNat: forall x :e int, 0 < x -> nat_p x.

Theorem NNegIntNat1: forall x :e int, ~(x < 0) -> nat_p x.

Theorem NNegIntNat2: forall x :e int, 0 <= x -> nat_p x.

Using these results, along with a few others, we can prove a contradiction by reducing to
the following previously proven version of the Pigeonhole principle:

PigeonHole_nat :

forall n, nat_p n ->

forall f:set -> set,

(forall i :e ordsucc n, f i :e n)

-> ~(forall i j :e ordsucc n, f i = f j -> i = j).

A second version of the Pigeonhole principle states that every (array acting as an) injective
function from {0, . . . , n− 1} into {0, . . . , n− 1} is surjective. As an SMT2 problem this can be
stated as follows:

(assert

(not

6Note that this allows the set of arrays to be empty. If all types in SMT3 will be assumed to be nonempty,
then this definition should be changed.
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(forall

((?n Int))

(=> (>= ?n 0)

(forall

((?f (Array Int Int)))

(=> (forall ((?i Int))

(=> (and (<= 0 ?i) (< ?i ?n))

(and (<= 0 (select ?f ?i)) (< (select ?f ?i) ?n))))

(=> (forall ((?i Int) (?j Int))

(=> (and (<= 0 ?i) (< ?i ?n) (<= 0 ?j) (< ?j ?n)

(= (select ?f ?i) (select ?f ?j)))

(= ?i ?j)))

(forall

((?j Int))

(=> (and (<= 0 ?j) (< ?j ?n))

(exists ((?i Int))

(and (<= 0 ?i) (< ?i ?n) (= (select ?f ?i) ?j))))))))))))

The corresponding Megalodon theorem looks as follows:

Theorem PigeonHoleArrays_2_unsat :

forall Array:set -> set -> set,

Array_interp Array ->

~(forall n :e int, 0 <= n ->

forall f :e Array int int,

(forall i :e int, 0 <= i /\ i < n ->

0 <= f i /\ f i < n)

-> (forall i j :e int,

0 <= i /\ i < n /\ 0 <= j /\ j < n /\ f i = f j

-> i = j)

-> (forall j :e int, 0 <= j /\ j < n

-> exists i :e int, 0 <= i /\ i < n /\ f i = j))

-> False.

The Megalodon proof proceeds by reducing to a similar previously proven version of the
Pigeonhole Principle. However, it would also be possible to infer the second version from the
first version simply by instantiating with an array with one element changed.7

4.3 Failure of Schroeder-Bernstein for Arrays

As a final example, we consider the Schroeder-Bernstein property for arrays. That is, we
consider whether or not two types α and β must have a bijection between them if there are
injections from α into β and β into α. In this case the negation of the property is satisfiable
and we give an interpretation of arrays for which the property fails. Usually in logic there is
either a proof on the one hand or a model on the other. However, in this case we can also give
a proof term for a proof of the negation of the set theoretical property (where the negation is
before the quantifier over possible interpretations of arrays).

For the SMT2 problem we let f and g be of appropriate array types and assume f and g
are injective. We then assume there does not exist a bijective array.

(declare-fun f () (Array Int Int))

(declare-fun g () (Array Int Int))

7We leave the details to the interested reader.
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(assert (forall ((?m Int) (?n Int)) (=> (= (select f ?m) (select f ?n)) (= ?m ?n))))

(assert (forall ((?m Int) (?n Int)) (=> (= (select g ?m) (select g ?n)) (= ?m ?n))))

(assert

(not (exists ((?h (Array Int Int)))

(and (forall ((?m Int) (?n Int)) (=> (= (select ?h ?m) (select ?h ?n)) (= ?m ?n)))

(forall ((?n Int)) (exists ((?m Int)) (= (select ?h ?m) ?n)))))))

The translation of this problem to a set theoretic proposition in Megalodon appears as
follows:

forall Array:set -> set -> set,

Array_interp Array ->

(forall f g :e Array int int,

(forall m n :e int, f m = f n -> m = n)

-> (forall m n :e int, g m = g n -> m = n)

-> ~(exists h :e Array int int,

(forall m n :e int, h m = h n -> m = n)

/\ (forall n :e int, exists m :e int, h m = n))

-> False)).

This is not provable. However, we can prove the negation of the proposition (if we are
careful to put the negation before the quantifier for the interpretation of arrays).

Theorem SchroederBernsteinArrays_sat :

~(forall Array:set -> set -> set,

Array_interp Array ->

(forall f g :e Array int int,

(forall m n :e int, f m = f n -> m = n)

-> (forall m n :e int, g m = g n -> m = n)

-> ~(exists h :e Array int int,

(forall m n :e int, h m = h n -> m = n)

/\ (forall n :e int, exists m :e int, h m = n))

-> False)).

The most important choice for proving this negated proposition is properly instantiating
for Array. We start by defining an injective function from integers to natural numbers which
sends negative integers x to (2(−x)) + 1 and nonnegative integers x to 2x.

set int_into_nat : set := (fun x :e int => if x < 0 then ordsucc (2 * (- x)) else 2 * x).

We can now inductively define the collection of all functions that are the same as
int into nat except on finitely many elements.

set ArrayIntInt_p : set -> prop := fun f =>

forall p:set -> prop,

p int_into_nat

-> (forall f, forall x y :e int, p f -> p (fun u :e int => if u = x then y else f u))

-> p f.

Finally we can define Array (the term we will use as the instantiation for the quantified
variable Array) to be the set of all functions unless both arguments are the set of integers, in
which case the functions must satisfy ArrayIntInt p.

set Array : set -> set -> set :=

9
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fun A B =>

if A = int /\ B = int then

{f :e int :^: int | ArrayIntInt_p f}

else B :^: A.

Intuitively it should be clear that this choice satisfies Array interp. It is also the case
that Array int int contains no bijection. Formally we prove that every function satisfying
ArrayIntInt p has a lower bound and then use this to conclude that such a function cannot
be a surjection.

The Megalodon file containing all the definitions and proofs mentioned above is less than
1000 lines. The full Proofgold document (containing the proof terms for each proof) is 108KB.

4.4 Integer Difference Logic

Our final examples will be two small integer difference logic problems from the “job shop” collec-
tion from QF IDL portion of the SMT library. One is satisfiable and the other is unsatisfiable.
In both cases we can obtain proof terms for the corresponding set theoretic proposition.

As described in [?] satisfiability of a set of atoms of the form x1 +−x0 ≤ v0, x2 +−x1 ≤ v1,
. . . , x0 +−xn−1 ≤ vn−1 (where the variables range over integers) can be decided by forming a
certain directed graph with edges labeled by integers and checking if there is a negative loop.
If there is no negative loop, then values for the variables can be computed from the graph.

We first consider the problem jobshop2-2-1-1-4-4-11. In the problem there are five integer
variables s11, s12, s21, s22 and ref . The assertion given in the problem

(v1 ∨ v0) ∧ (v0 ∨ v1) ∧ (v3 ∨ v2) ∧ (v2 ∨ v3) ∧ s12 − s11 ≥ 4 ∧ s22 − s21 ≥ 4
∧s12 − ref ≤ 7 ∧ s22 − ref ≤ 7 ∧ s11 − ref ≥ 0 ∧ s21 − ref ≥ 0

where v1, v0, v3 and v4 are locally defined (via a let) to be the atoms s11− s21 ≥ 4, s21− s11 ≥ 4,
s12 − s22 ≥ 4 and s22 − s12 ≥ 4, respectively. This problem is unsatisfiable. An informal proof of
unsatisfiability proceeds by splitting into two cases via the disjunction v3 ∨ v2. In the v3 case
there is a negative loop given by s12, s

2
2, s

2
1, ref . In the v2 case there is a negative loop given by

s22, s
1
2, s

1
1, ref .

The set theoretic version of the problem can be defined as the following proposition in
Megalodon.

Definition jobshop2_2_1_1_4_4_11 : prop :=

forall s1_1 s1_2 s2_1 s2_2 ref :e int,

forall v_1:prop, v_1 = (4 <= s1_1 + - s2_1)

-> forall v_0:prop, v_0 = (4 <= s2_1 + - s1_1)

-> forall v_3:prop, v_3 = (4 <= s1_2 + - s2_2)

-> forall v_2:prop, v_2 = (4 <= s2_2 + - s1_2)

-> ((v_1 \/ v_0) /\ (v_0 \/ v_1) /\ (v_3 \/ v_2) /\ (v_2 \/ v_3)

/\ 4 <= s1_2 + - s1_1 /\ 4 <= s2_2 + - s2_1

/\ s1_2 + - ref <= 7 /\ s2_2 + - ref <= 7

/\ 0 <= s1_1 + - ref /\ 0 <= s2_1 + - ref)

-> False.

Note that we have slightly modified the inequalities to all use ≤ for simplicity. Also, we combine
the unary − with the binary + operator instead of using a binary − operator. Finally, we have
replaced the let declarations for the vi’s with universally quantified variables and an assumed
identity. The proposition above corresponds to the unsatisfiability of the original SMT problem

10
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and it can be proven in set theory using the negative loops mentioned above and the following
(formally proven) result.

Theorem idl_negcycle_4 : forall x y z w v1 v2 v3 v4,

SNo x -> SNo y -> SNo z -> SNo w

-> SNo v1 -> SNo v2 -> SNo v3 -> SNo v4

-> v1 + v2 + v3 + v4 < 0

-> y + - x <= v1 -> z + - y <= v2

-> w + - z <= v3 -> x + - w <= v4

-> False.

The theorem idl_negcycle_4 is specific to negative loops of length 4, but is also more general
since variables range over values satisfying the predicate SNo, a predicate true for integers, real
numbers, and more (Conway’s extension of the real numbers described in [?]). While it is
relatively easy to prove idl_negcycle_4 directly, it is somewhat unsatisfying to have the result
be specific to cycles of length 4. Fortunately the theorem can be easily proven as a consequence
of the following (formally proven) general result about cycles of length n, by induction on n.

Theorem SNo_idl_cycle_nonneg : forall n, nat_p n ->

forall f g:set -> set,

(forall i :e ordsucc n, SNo (f i))

-> (forall i :e ordsucc n, SNo (g i))

-> f (ordsucc n) = f 0

-> (forall i :e ordsucc n, f (ordsucc i) + - f i <= g i)

-> 0 <= finite_add_SNo (ordsucc n) g.

Note that f corresponds to an n + 1-tuple (with fn = f0) and g corresponds to an n-tuple.
The function finite add SNo takes a natural number n and a function g and returns the sum
Σi∈ngi.

The final example we consider is jobshop2-2-1-1-4-4-12 which is a simple modification
of the previous example by changing each 7 to 8.

(v1 ∨ v0) ∧ (v0 ∨ v1) ∧ (v3 ∨ v2) ∧ (v2 ∨ v3) ∧ s12 − s11 ≥ 4 ∧ s22 − s21 ≥ 4
∧s12 − ref ≤ 8 ∧ s22 − ref ≤ 8 ∧ s11 − ref ≥ 0 ∧ s21 − ref ≥ 0

This makes the problem satisfiable by taking s18 = −8, s12 = −4, s21 = −4, s22 = 0 and ref = −8.
The corresponding set theoretic proposition is given as follows:

Definition jobshop2_2_1_1_4_4_12 : prop :=

forall s1_1 s1_2 s2_1 s2_2 ref :e int,

forall v_1:prop, v_1 = (4 <= s1_1 + - s2_1)

-> forall v_0:prop, v_0 = (4 <= s2_1 + - s1_1)

-> forall v_3:prop, v_3 = (4 <= s1_2 + - s2_2)

-> forall v_2:prop, v_2 = (4 <= s2_2 + - s1_2)

-> ((v_1 \/ v_0) /\ (v_0 \/ v_1) /\ (v_3 \/ v_2) /\ (v_2 \/ v_3)

/\ 4 <= s1_2 + - s1_1 /\ 4 <= s2_2 + - s2_1

/\ s1_2 + - ref <= 8 /\ s2_2 + - ref <= 8

/\ 0 <= s1_1 + - ref /\ 0 <= s2_1 + - ref)

-> False.

Since the problem is satisfiable, the proposition cannot be proven. However, we can prove its
negation by assuming the proposition holds and applying it to the values above. One must then
proven v0 and v2 hold (giving all the disjunctions) and prove the remaining inequalities hold.
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5 Remarks about Completeness

A common belief is that it is impossible to have a recursively enumerable proof system for
higher-order logic. This is in conflict to the fact that many proof systems are complete relative
to Henkin-Andrews semantics. The reason for the belief is the essential incompleteness relative
to standard set theoretic semantics, as mentioned earlier.

After adding set theoretic axioms to higher-order logic, one obtains categoricity results
relative to “standard models.” (This has even been formalized in Coq, using what could be
called “standard type theoretic models” [?].) A consequence is that the continuum hypothesis is
true in every standard model or false in every standard model. The natural question (troubling
Cantor) is: “which is it?”

This natural question makes no sense from the Formalist point of view. A Formalist only
cares if the continuum hypothesis is provable. The continuum hypothesis is independent (even
in higher-order set theory) and so it is not provable and its negation is not provable.

The question may concern a Platonist. The unsatisfying answer from the Platonist point
of view is that the continuum hypothesis is true in every standard model if and only if the
continuum hypothesis is true in the platonic universe of sets. One could say that information
about the platonic universe of sets “leaks through” when standard models are used.

Once we pass to Henkin-Andrews models of higher-order set theory, these concerns go away.
Even if the continuum hypothesis is true in every standard model, it is false in some Henkin-
Andrews models. Likewise, even if the continuum hypothesis is false in every standard model,
it is true in some Henkin-Andrews models. Two Platonists who disagree whether or not the
continuum hypothesis is “actually” true or false, will still agree that it is true in some Henkin-
Andrews models and false in others.

This is the sense in which the proof system for higher-order set theory could be considered
“complete.” If the higher-order set theory were considered the semantics of SMT3 (via the
Werner-Aczel proof irrelevant set theoretic semantics), then one would not expect an SMT3
proof procedure to be complete. (Or, put more positively, a complete proof procedure for SMT3
would be an interesting result.)

6 Possible Research on Intermediate Proof Systems

One objection to taking either CIC or higher-order set theory as a standard for independently
checkable proof terms for SMT3 is that it could preempt publishable research on other possible
notions of proof objects. However, it is common in the case of programming language research
to create various intermediate languages and factor compilation as translations through these
intermediate languages. Analogous research could be done on intermediate proof languages.
Such languages may not be able to represent unsatisfiability proofs for every possible unsat-
isfiable SMT3 problem, but could handle special cases (e.g., proofs by induction). It is easy
to imagine intermediate languages handling special cases efficiently while the translation from
the intermediate language to the full proof terms for CIC or higher-order set theory would be
impractical.

7 Conclusion

A finitely axiomatized set theory using Church’s type theory instead of first-order logic provides
a simple way of obtaining a candidate semantics for SMT3. Via Curry-Howard, we also naturally
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obtain a candidate notion of independently checkable proof term.
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