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Abstract

to do

1 Introduction

A preliminary proposal for SMT-LIB Version 3.0 was recently published online [1]. According to
this proposal, there are plans to extend SMT in serious ways, essentially bringing an expressive
power somewhere between Church’s simple type theory [11] (by including arrow types) and the
Calculus of Inductive Constructions [22, 8, 23] (by including dependent types and inductively
defined types). In addition, a working group on SMT proofs was announced [7] with the goal
of developing a standard for “producing independently checkable proofs.” Of course, having a
standard notion of proof for SMT3 will require clarifying the intended semantics of SMT3 so
that there is precision about what sets of formulas should be unsatisfiable (so there might be a
“proof” of inconsistency) or satisfiable (so there might be a “model”). We consider the possibility
of using higher-order set theory via the well-known Werner-Aczel semantics of Calculus of
Inductive Constructions to provide both a clear semantics and a notion of checkable proof that
is likely to be sufficient for SMT3 as well as possible future extensions. We also give examples
to demonstrate the feasibility of the approach.

2 Models and Proofs in General

In the best case scenario a logic provides a clear definition of propositions, a rigorous definition
of when a proposition is provable and a class of interpretations with a satisfaction relation. A
proposition is considered valid if it is true in every interpretation in the class. The logic satisfies
soundness and completeness if provability coincides with validity. The most well-known case
is classical first-order logic with any number of proof systems and interpretations given by
Tarski-style semantics.

Church’s simple type theory provides another example of such a logic. In Church’s original
paper [11] there is a clear definition of types, terms (some of which are propositions) and a
Hilbert style proof system. Henkin [15] later gave a notion of semantics for which a completeness
result could be proven. (Technically Henkin’s interpretations were not all sound with respect to
Church’s functional extensionality axiom, but this was corrected by Andrews [4].) An equality-
based version of Church’s simple type theory with a Hilbert style proof system and a notion
of interpretation (called general models) following the Henkin-Andrews approach is presented
in [3]. Furthermore in [3] one can find proofs of soundness, completeness and the usual results
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associated with first-order logic such as the Lowenheim-Skolem Theorem and the Compactness
Theorem.

For more serious extensions of Church’s simple type theory – such as the Calculus of Induc-
tive Constructions – there does not seem to be an effort to create a Henkin-Andrews notion
of interpretation for which one could prove soundness and completeness. Instead research into
semantics for type theories has tended to go in the direction of category theory [20, 17] and the
most interesting interpretations are not classical.

In terms of soundness alone, there is one well-known set theoretic interpretation of type
theories like the Calculus of Inductive Constructions. The interpretation is classical, extensional
and satisfies proof irrelevance.1 It was described by Werner [27] and Aczel [2] with more details
found in the works of Werner, Lee and Barras [21, 5]. In this model, the universe of propositions
is interpreted as a two element set – one of which is empty (having no proofs) representing “false”
and the other being a singleton (having one proof) representing “true.” Being a two element set
makes it essentially the same as the interpretation of the type of booleans, as seems to be the
intended treatment of propositions as booleans in SMT. Types are interpreted as sets (including
the empty set) which live in some universe closed under various set theoretic operations. Coq
is a well-known proof assistant based on the Calculus of Inductive Constructions (CIC) and
each type universe is closed under the formation of (dependent) function types and inductively
defined types. The Werner-Aczel style of interpretation would interpret each of Coq’s universes
as a set U closed under the corresponding set-theoretic operations (e.g., if A and B are in the
set U , then the set BA of functions is in the set U).

An alternative to attempting to obtain a Henkin-Andrews style semantics for which sound-
ness and completeness can be proven is to simply take the standard set theoretic semantics
but allow the model of the underlying set theory to change. That is, instead of defining a
proposition as valid if it is true in every standard set theoretic interpretation, one could define
it as being valid if it is true in every standard set theoretic interpretation living in a model of,
say, first-order ZFC. Validity would then become recursively enumerable again and we clearly
have a complete proof system (given by any proof system for first-order ZFC). We explore this
possibility in this paper, except we use higher-order Tarski Grothendieck (HOTG) as described
in [10] instead of first-order ZFC. The reason for using higher-order instead of first-order is to
make the theory finitely axiomatizable. (We still obtain complete calculi via Henkin-Andrews
semantics.) The reason for using Tarski Grothendieck instead of Zermelo Fraenkel is to ensure
we have sufficient set theoretic universes for interpreting the type theoretic universes of CIC.
For more information, a longer discussion is in the unpublished paper [9], from which some of
the material form this article was taken.

3 Higher-Order Set Theory with Proof Terms
We begin by giving a formulation of simple type theory with proof terms, which we then extend
to include set theory. The types are simple types and the terms are simply typed λ-terms in
the style of Church [11]. The proof system is a natural deduction system [24] that admits proof
terms in the usual Curry-Howard-de Bruijn style [16, 14, 25]. We additionally include constants
and axioms for Tarski-Grothendieck style set theory [26] similar to the formulation described
in [10].

We have two base types ι (sets) and o (propositions). All other types are function types
of the form (αβ) of functions from α to β. Such function types are often written as (α → β).

1Proof irrelevance means all proofs of a given proposition are equal.
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Γ ` Knowns : s
s ∈ A

Γ ` u : s
u : s ∈ Γ

Γ ` D : s

Γ ` D : t
s≈t

Γ, u : s ` D : t

Γ ` (λu : s.D) : s→ t

Γ ` D : s→ t Γ ` E : s

Γ ` (DE) : t

Γ ` D : s

Γ ` (λx.D) : ∀x.s
x ∈ Vα \ FΓ

Γ ` D : ∀x.s
Γ ` (Dt) : sxt

x ∈ Vα, t ∈ Λα

Γ ` Extα,β : (∀fg : αβ.(∀x : α.fx = gx)→ f = g)
f, g distinct

Figure 1: Natural Deduction Calculus with Proof Terms

When parentheses are omitted they should be replaced to the right, e.g., ιιo is the type (ι(ιo)).
Let Vα be the set of variables of type α and Sα be a set of constants of type α. Assume we

have countably many variables at each type. We now define a family (Λα)α of terms recursively,
where s ∈ Λα means s is a term of type α.

• (Variables) If x ∈ Vα, then x ∈ Λα.

• (Constants) If c ∈ Sα, then c ∈ Λα.

• (Application) If s ∈ Λαβ and t ∈ Λα, then (st) ∈ Λβ .

• (Abstraction) If x ∈ Vα and t ∈ Λβ , then (λx.t) ∈ Λαβ .

• (Implication) If s ∈ Λo and t ∈ Λo, then (s→ t) ∈ Λo.

• (Universal Quantification) If x ∈ Vα and t ∈ Λo, then (∀x.t) ∈ Λo.

We use common conventions for omitting parentheses and abbreviating multiple binders. Propo-
sitions are terms in Λo. The set F(s) for free variables of a term is defined as usual as is the
notion of capture avoiding substitution, denoted sxt . We consider two terms to be equal if they
are the same up to α-conversion (renaming of bound variables). The notion of βη-conversion,
denoted s≈t, is also defined in the usual way.

Given a family of constants S and a set of propositions A, we can give a notion of provability
via a natural deduction system. We give such a system, annotated with proof terms, in Figure 1.
It is straightforward to write a proof checker for such a calculus. Indeed it uses the same ideas
as the earliest proof checker, AUTOMATH [13, 14], dating back to 1968. A particular proof
checker is included in software supporting the Proofgold cryptocurrency.2 In our examples
we will create proofs checkable by the Proofgold proof checker. We will also compare the
performance of the checker distributed with the Proofgold Core software to a much faster
alternative implementation due to the third author.

Our primary use case is where S is a collection of set theoretic constants (either primitive or
defined) and A is a set of propositions that are either axioms of set theory or follow from those
axioms. The particular set theory we have in mind is a form of higher-order Tarski-Grothendieck
(HOTG). The primitive constants are those listed in [10], with the exception that we only take
the choice operator ει at type ι, rather than at every type. Specifically we have ει : (ιo)ι,
In : ιιo, Empty : ι, Union : ιι, Power : ιι, Repl : ι(ιι)ι and UnivOf : ιι. The axioms we have in

2https://prfgld.github.io
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mind are those given in [10], again with the exception that we only take a choice axiom at type
ι. The axioms are sufficient to ensure the logic is classical and extensional. As a consequence
the proof system is sound and complete with respect to Henkin-Andrews semantics.

From now on we will write set theoretic propositions in the usual mathematical style, with
the understanding that this can be (and is) fully formalized. For example, ∀xAB.x ∈ A ∧A ⊆
B → x ∈ B corresponds to ∀x.∀A.∀B.and (In x A) (Subq A B)→ In x B where x,A,B ∈ Vι, In
is primitive, and : ooo is defined in the usual Russell-Prawitz style as λq.λr.∀p.(q → r → p)→ p,
and Subq : ιιo is defined as λA.λB.∀x.In x A→ In x B.

4 Translating to Set Theory

The Werner-Aczel interpretation of the Calculus of Inductive Constructions (CiC) is described
elsewhere [27, 2, 21, 5]. For our purposes we simply write M,N,A,B,D, . . . for terms of CiC
and assume we have a partial function which may assign a set TϕM to M , given an assignment
ϕ for (at least) the variables in M . We assume that for well-typed terms M depending on
variables x1 : A1, . . . xn : An, TϕM is defined whenever ϕxi ∈ TϕAi for i ∈ {1, . . . , n}. We
furthermore assume the values satisfy the expected properties. For example, if M has type A,
then TϕM ∈ TϕA. In particular, if M is a proposition (has type Prop), then TϕM ∈ 2, where
2 is {0, 1}. Here, 0 is the empty set and 1 is {0}. The value 0 is also assigned to every proof.
That is, if M is a proposition with proof D, then TϕM is 1 and TϕD is 0 (for appropriate
assignments ϕ).

Intuitively T maps from a type theory (CiC) to the language of mathematics. However, our
intention is to use T to map from CiC to the formal set theory in Section 3. This provides both
a semantics to CiC and a different (stronger) notion of proof term, the notion of proof from
Section 3. While there is no proof of proof irrelevance in CiC, there is a proof of its translation
via T .

As a starting point for translating SMT to set theory, let us consider sorts and terms in SMT
to be corresponding terms in CiC. In that case, T already provides a method of translating
SMT sorts and terms to sets. If we simply consider SMT propositions to be terms of type
boolean, then we can also translate SMT propositions to sets (each provably a member of 2) –
a set which is “true” if 0 is a member of it and “false” otherwise. However, the SMT propositions
will correspond more closely to the set theoretic propositions if we use T to define a mapping
T p sending SMT propositions to set theoretic propositions. For example, T pϕ (¬P ) should be
¬T pϕ (P ), T pϕ (∀x : A.P ) should be ∀x : ι.x ∈ Tϕ(A) → T pϕ,x 7→x(P ) and T pϕ (s = t) should be
Tϕ(s) = Tϕ(t). If no other case applies, T pϕ (P ) is taken to be 0 ∈ Tϕ(P ).

It is an oversimplification to consider SMT sorts to be CiC types. Some SMT sorts have
a special intended meaning. For example, the SMT sort Int of integers should be interpreted
as the set of integers, i.e., we should have Tϕ(Int) = ω ∪ {−n|n ∈ ω}, where −n is defined
appropriately. In the examples in this paper we will only use the SMT sorts for booleans,
integers and arrays. Hence we assume Tϕ(Bool) = 2 and Tϕ(Int) is the set of integers. The
interpretation of arrays is restricted but not fixed by the specification (see Page 39 of [6]), and
we will handle this in a special way shown in the next section.

Suppose an SMT problem is given by a set of declarations of sorts σ1, . . ., σn, typed constants
u1 : α1, . . . , um : αm and assertions P1, . . . , Pk. Let U be a fixed Grothendieck universe, i.e.,
a set provably satisfying the properties of ZFC. We can translate the SMT problem to the set
theoretic proposition

∀σ1 · · ·σn ∈ U.∀u1 ∈ Tϕ1(α1) · · · ∀um ∈ Tϕ1(αm).T pϕ2
(P1)→ · · · → T pϕ2

(Pk)→ ⊥

4
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where ϕ1 takes each αi to a corresponding variable of type ι (a “set”) which we also call αi
and ϕ2 extends ϕ1 by also taking each uj to a corresponding variable of type ι (a “set”) which
we also call uj . Note that the set theoretic proposition corresponding to the SMT problem
is provable if the SMT problem is unsatisfiable. As a consequence, if the negation of the set
theoretic proposition is provable, then the SMT problem must be satisfiable. It is also possible
that neither the set theoretic proposition nor its negation is provable.

5 Examples
We now consider a few examples. In each case we will show the result of translating the problem
to a formal set theory and note there is either a formal proof of the set theoretic proposition or
a formal proof of its negation. We briefly describe the proofs in each case. To make definitions
and construct proofs in the formal set theory we will use the Megalodon system3 (the successor
to the Egal system [10]). Megalodon can also produce Proofgold proof terms presented in a
simple to parse prefix notation.4 While the Proofgold checker can be used for type checking and
proof checking the data, we claim that it is straightforward to implement an independent proof
checker and we additionally check the proofs with a faster reimplementation of the checker. We
allow ourselves to freely use previous definitions or previously proven results (if they have been
previously proven in Megalodon and published in Proofgold documents). That is, we do not
need the proof term to contain a justification back to the axioms of set theory, but only back
to previously proven results.

5.1 Induction
As a first simple example we consider induction on the natural numbers. Here the natural
numbers are considered as a predicate over the sort Int.

In SMT2 format we can assert induction fails (which should be unsatisfiable) by giving a
predicate p which holds for 0 and is closed under successor but does not hold for all integers
n ≥ 0. Here is the SMT2 specification:

(declare-fun p (Int) Bool)
(assert (p 0))
(assert (forall ((?n Int)) (=> (<= 0 ?n) (=> (p ?n) (p (+ ?n 1))))))
(assert (not (forall ((?n Int)) (=> (<= 0 ?n) (p ?n)))))

To translate this into a set theoretical statement, we must give a specific set representing
integers. For natural numbers a reasonable option is to take the finite ordinals (the members
of ω). As part of a formalization of Conway’s surreal numbers [12] we also have a unary minus
operation on all surreal numbers (including ordinals). The details are not important here, but
it is sufficient to note that −0 = 0, −n /∈ ω if n ∈ ω and − − x = x for all surreal numbers x.
We take int to be the set ω ∪ {−n|n ∈ ω} and use int as the fixed interpretation of the sort Int.
In the Megalodon preamble file we use this definition appears as follows:

Definition int : set := omega :\/: {- n|n :e omega}.

We also have a binary operation + on surreal numbers which behaves as expected on int,
as well as orderings < and ≤ on surreal numbers. In general we will not give details about
definitions unless they are relevant. We will only state some relevant properties we use, but
emphasize that all properties we use have been previously proven in Megalodon and published

3http://grid01.ciirc.cvut.cz/~chad/megalodon-1.8.tgz.
4The full data is available at http://grid01.ciirc.cvut.cz/~chad/smt2022data.tgz.
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into the Proofgold chain. There are no goals left open. To make the translation more direct on
propositions, we assume T p(s < t) is T (s) < T (t) and T p(s ≤ t) is T (s) ≤ T (t) when s and t
are of type Int.

We have chosen to locally define bp as follows:

Let bp : set -> prop := fun b => 0 :e b.

We briefly consider the behavior of bp when applied to booleans (members of the set {0, 1}).
The negation of bp 0 is 0 /∈ 0 which is provable, so bp 0 acts as the false proposition. On the
other hand bp 1 is 0 ∈ 1 which is provable, so bp 0 acts as the true proposition. Such local
definitions act more as notation that is translated away. Other definitions would also work.

The statement of the set theoretic translation of the SMT2 problem appears as follows in
Megalodon:

Theorem example1ind_unsat:
forall p :e 2 :^: int,

bp (p 0)
-> (forall n :e int, 0 <= n -> bp (p n) -> bp (p (n + 1)))
-> ~(forall n :e int, 0 <= n -> bp (p n))
-> False.

The set 2 :^: int denotes the set of functions from integers to booleans: 2int. Essentially
the statement says the three (translated) assertions lead to a contradiction. Note that since
p 0 is a boolean (a set which is a member of {0, 1}), the coercion bp is used to create the
corresponding proposition whenever necessary.

The proof in Megalodon proceeds as follows: we assume p is in the set 2int and assume
the three properties hold. In the preamble there is a predicate nat_p that holds for the finite
ordinals. A previously proven induction principle is included:

nat_ind : forall p:set->prop,
p 0

-> (forall n, nat_p n -> p n -> p (ordsucc n))
-> forall n, nat_p n -> p n.

It is straightforward to prove the translated statement from this already known induction
principle.

5.2 Pigeonhole
Our second example will be two versions of the Pigeonhole Principle. We use arrays from
integers to integers (with some constraints) to play the role of functions from finite ordinals
to finite ordinals. In the first version we will state that every array acting as a function from
{0, . . . , n} to {0, . . . , n − 1} is not injective. In SMT2 format we assert the negation of this
statement as follows:

(assert
(not
(forall
((?n Int))
(=> (>= ?n 0)

(forall
((?f (Array Int Int)))
(=> (forall ((?i Int))

(=> (and (<= 0 ?i) (<= ?i ?n))
(and (<= 0 (select ?f ?i)) (< (select ?f ?i) ?n))))

6
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(exists ((?i Int) (?j Int))
(and (<= 0 ?i) (< ?i ?j) (<= ?j ?n)

(= (select ?f ?i) (select ?f ?j))))))))))

In order to translate this SMT2 problem into a statement of formal set theory we must
interpret arrays. We will translate to a statement that universally quantifies over appropriate
interpretations of arrays. An interpretation of arrays is a (meta-)function Array taking two
sets and returning a set satisfying the following property:

Definition Array_interp : (set -> set -> set) -> prop
:= fun Array =>

(forall X Y, Array X Y c= Y :^: X)
/\ (forall X Y, forall f :e Array X Y, forall x :e X, forall y :e Y,

(fun u :e X => if u = x then y else f u) :e Array X Y).

That is: for sets X and Y , Array X Y must be a set of functions from X to Y that is closed
under changing one value.5 To deal with arrays, we modify the translation so that TϕArray is
a special selected variable Array : ιιι and produce the set theoretic problem

∀Array.Array_interp Array → ∀σ1 · · ·σn ∈ U.
∀u1 ∈ Tϕ1

(α1) · · · ∀um ∈ Tϕ1
(αm).T pϕ2

(P1)→ · · · → T pϕ2
(Pk)→ ⊥.

Translating the Pigeonhole SMT problem to the formal set theory of Megalodon we have
the following theorem:

Theorem PigeonHoleArrays_1_unsat :
forall Array:set -> set -> set,

Array_interp Array ->
~(forall n :e int, 0 <= n ->

forall f :e Array int int,
(forall i :e int, 0 <= i /\ i <= n ->

0 <= f i /\ f i < n)
-> (exists i j :e int, 0 <= i /\ i < j /\ j <= n /\ f i = f j))

-> False.

We can prove the set theoretic version by reducing to the following previously proven version
of the Pigeonhole principle:

PigeonHole_nat :
forall n, nat_p n ->
forall f:set -> set,

(forall i :e ordsucc n, f i :e n)
-> ~(forall i j :e ordsucc n, f i = f j -> i = j).

A second version of the Pigeonhole principle states that every (array acting as an) injective
function from {0, . . . , n− 1} into {0, . . . , n− 1} is surjective. As an SMT2 problem this can be
stated as follows:

(assert
(not
(forall
((?n Int))
(=> (>= ?n 0)

(forall
5Note that this allows the set of arrays to be empty. If all types in SMT3 will be assumed to be nonempty,

then this definition should be changed.

7
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((?f (Array Int Int)))
(=> (forall ((?i Int))

(=> (and (<= 0 ?i) (< ?i ?n))
(and (<= 0 (select ?f ?i)) (< (select ?f ?i) ?n))))

(=> (forall ((?i Int) (?j Int))
(=> (and (<= 0 ?i) (< ?i ?n) (<= 0 ?j) (< ?j ?n)

(= (select ?f ?i) (select ?f ?j)))
(= ?i ?j)))

(forall
((?j Int))
(=> (and (<= 0 ?j) (< ?j ?n))

(exists ((?i Int))
(and (<= 0 ?i) (< ?i ?n) (= (select ?f ?i) ?j))))))))))))

The corresponding Megalodon theorem looks as follows:

Theorem PigeonHoleArrays_2_unsat :
forall Array:set -> set -> set,

Array_interp Array ->
~(forall n :e int, 0 <= n ->

forall f :e Array int int,
(forall i :e int, 0 <= i /\ i < n ->

0 <= f i /\ f i < n)
-> (forall i j :e int,

0 <= i /\ i < n /\ 0 <= j /\ j < n /\ f i = f j
-> i = j)

-> (forall j :e int, 0 <= j /\ j < n
-> exists i :e int, 0 <= i /\ i < n /\ f i = j))

-> False.

The Megalodon proof proceeds by reducing to a similar previously proven version of the
Pigeonhole Principle. However, it would also be possible to infer the second version from the
first version simply by instantiating with an array with one element changed.

5.3 Failure of Schroeder-Bernstein for Arrays
As a third example, we consider the Schroeder-Bernstein property for arrays. That is, we
consider whether or not two types α and β must have a bijection between them if there are
injections from α into β and β into α. In this case the negation of the property is satisfiable
and we give an interpretation of arrays for which the property fails. Usually in logic there is
either a proof on the one hand or a model on the other. However, in this case we can also give
a proof term for a proof of the negation of the set theoretical property (where the negation is
before the quantifier over possible interpretations of arrays).

For the SMT2 problem we let f and g be of appropriate array types and assume f and g
are injective. We then assume there does not exist a bijective array.

(declare-fun f () (Array Int Int))
(declare-fun g () (Array Int Int))
(assert (forall ((?m Int) (?n Int)) (=> (= (select f ?m) (select f ?n)) (= ?m ?n))))
(assert (forall ((?m Int) (?n Int)) (=> (= (select g ?m) (select g ?n)) (= ?m ?n))))
(assert

(not (exists ((?h (Array Int Int)))
(and (forall ((?m Int) (?n Int)) (=> (= (select ?h ?m) (select ?h ?n)) (= ?m ?n)))

(forall ((?n Int)) (exists ((?m Int)) (= (select ?h ?m) ?n)))))))

8
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The translation of this problem to a set theoretic proposition in Megalodon appears as
follows:

forall Array:set -> set -> set,
Array_interp Array ->
(forall f g :e Array int int,

(forall m n :e int, f m = f n -> m = n)
-> (forall m n :e int, g m = g n -> m = n)
-> ~(exists h :e Array int int,

(forall m n :e int, h m = h n -> m = n)
/\ (forall n :e int, exists m :e int, h m = n))

-> False)).

This is not provable. However, we can prove the negation of the proposition (if we are
careful to put the negation before the quantifier for the interpretation of arrays).

Theorem SchroederBernsteinArrays_sat :
~(forall Array:set -> set -> set,

Array_interp Array ->
(forall f g :e Array int int,

(forall m n :e int, f m = f n -> m = n)
-> (forall m n :e int, g m = g n -> m = n)
-> ~(exists h :e Array int int,

(forall m n :e int, h m = h n -> m = n)
/\ (forall n :e int, exists m :e int, h m = n))

-> False)).

The most important choice for proving this negated proposition is properly instantiating
for Array. We start by defining an injective function from integers to natural numbers which
sends negative integers x to (2(−x)) + 1 and nonnegative integers x to 2x.

set int_into_nat : set := (fun x :e int => if x < 0 then ordsucc (2 * (- x)) else 2 * x).

We can now inductively define the collection of all functions that are the same as
int_into_nat except on finitely many elements.

set ArrayIntInt_p : set -> prop := fun f =>
forall p:set -> prop,

p int_into_nat
-> (forall f, forall x y :e int, p f -> p (fun u :e int => if u = x then y else f u))
-> p f.

Finally we can define Array (the term we will use as the instantiation for the quantified
variable Array) to be the set of all functions unless both arguments are the set of integers, in
which case the functions must satisfy ArrayIntInt_p.

set Array : set -> set -> set :=
fun A B =>

if A = int /\ B = int then
{f :e int :^: int | ArrayIntInt_p f}

else B :^: A.

Intuitively it should be clear that this choice satisfies Array_interp. It is also the case
that Array int int contains no bijection. Formally we prove that every function satisfying
ArrayIntInt_p has a lower bound and then use this to conclude that such a function cannot
be a surjection.

9
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5.4 Integer Difference Logic
Our final examples will be two integer difference logic problems from the “job shop” collection
from QF_IDL portion of the SMT library. One is satisfiable and the other is unsatisfiable. In
both cases we can obtain proof terms for the corresponding set theoretic proposition.

As described in [18] satisfiability of a set of atoms of the form x1 +−x0 ≤ v0, x2 +−x1 ≤ v1,
. . . , x0 +−xn−1 ≤ vn−1 (where the variables range over integers) can be decided by forming a
certain directed graph with edges labeled by integers and checking if there is a negative loop.
If there is no negative loop, then values for the variables can be computed from the graph.

We first consider the problem jobshop2-2-1-1-4-4-11 (slightly modified to be more read-
able). In the problem there are five integer variables s11, s12, s21, s22 and ref. The assertion given
in the problem

(v0 ∨ v1) ∧ (v2 ∨ v3) ∧ s12 − s11 ≥ 4 ∧ s22 − s21 ≥ 4
∧s12 − ref ≤ 7 ∧ s22 − ref ≤ 7 ∧ s11 − ref ≥ 0 ∧ s21 − ref ≥ 0

where v1, v0, v3 and v2 are locally defined (via a let) to be the atoms s11− s21 ≥ 4, s21− s11 ≥ 4,
s12 − s22 ≥ 4 and s22 − s12 ≥ 4, respectively. This problem is unsatisfiable. An informal proof of
unsatisfiability proceeds by splitting into two cases via the disjunction v3 ∨ v2. In the v3 case
there is a negative loop given by s12, s22, s21, ref. In the v2 case there is a negative loop given by
s22, s

1
2, s

1
1, ref.

The set theoretic version of the problem can be defined as the following proposition in
Megalodon.

Definition jobshop2_2_1_1_4_4_11 : prop :=
forall s1_1 s1_2 s2_1 s2_2 ref :e int,
forall v_0:prop, v_0 = (4 <= s2_1 + - s1_1)

-> forall v_1:prop, v_1 = (4 <= s1_1 + - s2_1)
-> forall v_2:prop, v_2 = (4 <= s2_2 + - s1_2)
-> forall v_3:prop, v_3 = (4 <= s1_2 + - s2_2)
-> ((v_0 \/ v_1) /\ (v_2 \/ v_3)
/\ 4 <= s1_2 + - s1_1 /\ 4 <= s2_2 + - s2_1
/\ s1_2 + - ref <= 7 /\ s2_2 + - ref <= 7
/\ 0 <= s1_1 + - ref /\ 0 <= s2_1 + - ref)

-> False.

Note that we have slightly modified the inequalities to all use ≤ for simplicity. Also, we combine
the unary − with the binary + operator instead of using a binary − operator. Finally, we have
replaced the let declarations for the vi’s with universally quantified variables and an assumed
identity. The proposition above corresponds to the unsatisfiability of the original SMT problem
and it can be proven in set theory using the negative loops mentioned above and the following
(formally proven) result.

Theorem idl_negcycle_4 : forall x y z w v1 v2 v3 v4,
SNo x -> SNo y -> SNo z -> SNo w

-> SNo v1 -> SNo v2 -> SNo v3 -> SNo v4
-> v1 + v2 + v3 + v4 < 0
-> y + - x <= v1 -> z + - y <= v2
-> w + - z <= v3 -> x + - w <= v4
-> False.

The theorem idl_negcycle_4 is specific to negative loops of length 4, but is also more general
since variables range over values satisfying the predicate SNo, a predicate true for integers, real
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numbers, and more (Conway’s extension of the real numbers described in [12]). While it is
relatively easy to prove idl_negcycle_4 directly, it is somewhat unsatisfying to have the result
be specific to cycles of length 4. Fortunately the theorem can be easily proven as a consequence
of the following (formally proven) general result about cycles of length n+ 1, by induction on
n.

Theorem SNo_idl_cycle_nonneg : forall n, nat_p n ->
forall f g:set -> set,

(forall i :e ordsucc n, SNo (f i))
-> (forall i :e ordsucc n, SNo (g i))
-> f (ordsucc n) = f 0
-> (forall i :e ordsucc n, f (ordsucc i) + - f i <= g i)
-> 0 <= finite_add_SNo (ordsucc n) g.

Note that f corresponds to an n+ 2-tuple (with f(n+ 1) = f0) and g corresponds to an n+ 1-
tuple. The function finite_add_SNo takes a natural number n and a function g and returns
the sum Σi∈ngi. To infer the special case for 4-cycles we apply the general result with 3 for n,
an f given by the 5-tuple (x, y, z, w, x) and an g given by the 4-tuple (v1, v2, v3, v4).

The final example we consider is jobshop2-2-1-1-4-4-12 (again slightly modified) which
is a simple modification of the previous example by changing each 7 to 8.

(v0 ∨ v1) ∧ (v2 ∨ v3) ∧ s12 − s11 ≥ 4 ∧ s22 − s21 ≥ 4
∧s12 − ref ≤ 8 ∧ s22 − ref ≤ 8 ∧ s11 − ref ≥ 0 ∧ s21 − ref ≥ 0

This makes the problem satisfiable by taking s11 = 0, s12 = 4, s21 = 4, s22 = 8 and ref = 0.
The corresponding set theoretic proposition is given as follows:

Definition jobshop2_2_1_1_4_4_12 : prop :=
forall s1_1 s1_2 s2_1 s2_2 ref :e int,
forall v_0:prop, v_0 = (4 <= s2_1 + - s1_1)

-> forall v_1:prop, v_1 = (4 <= s1_1 + - s2_1)
-> forall v_2:prop, v_2 = (4 <= s2_2 + - s1_2)
-> forall v_3:prop, v_3 = (4 <= s1_2 + - s2_2)
-> ((v_0 \/ v_1) /\ (v_2 \/ v_3)
/\ 4 <= s1_2 + - s1_1 /\ 4 <= s2_2 + - s2_1
/\ s1_2 + - ref <= 8 /\ s2_2 + - ref <= 8
/\ 0 <= s1_1 + - ref /\ 0 <= s2_1 + - ref)

-> False.

Since the problem is satisfiable, the proposition cannot be proven. However, we can prove its
negation by assuming the proposition holds and applying it to the values above. One must then
proven v0 and v2 hold (giving all the disjunctions) and prove the remaining inequalities hold.

6 Conclusion

A finitely axiomatized set theory using Church’s type theory instead of first-order logic provides
a simple way of obtaining a candidate semantics for SMT3. Via Curry-Howard, we also naturally
obtain a candidate notion of independently checkable proof term.
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