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1 Introduction

A preliminary proposal for SMT-LIB Version 3.0 was recently published on-
line [1]. According to this proposal, there are plans to extend SMT in serious
ways, essentially bringing an expressive power somewhere between Church’s
simple type theory [13] (by including arrow types) and the Calculus of In-
ductive Constructions [26, 11, 27] (by including dependent types and in-
ductively defined types). In addition, a working group on SMT proofs was
announced [9] with the goal of developing a standard for “producing indepen-
dently checkable proofs.” Of course, having a standard notion of proof for
SMT3 will require clarifying the intended semantics of SMT3 so that there is
precision about what sets of formulas should be unsatisfiable (so there might
be a “proof” of inconsistency) or satisfiable (so there might be a “model”). In
this document we give some remarks and suggestions for how to approach the
semantics and proofs for SMT3, along with pointers to relevant literature.

2 Models and Proofs in General

In the best case scenario a logic provides a clear definition of propositions,
a rigorous definition of when a proposition is provable and a class of inter-
pretations with a satisfaction relation. A proposition is considered valid if
it is true in every interpretation in the class. The logic satisfies soundness
and completeness if provability coincides with validity. The most well-known
case is classical first-order logic with any number of proof systems and inter-
pretations given by Tarski-style semantics.
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Church’s simple type theory provides another example of such a logic. In
Church’s original paper [13] there is a clear definition of types, terms (some
of which are propositions) and a Hilbert style proof system. Henkin [20]
later gave a notion of semantics for which a completeness result could be
proven. (Technically Henkin’s interpretations were not all sound with re-
spect to Church’s functional extensionality axiom, but this was corrected
by Andrews [5].) An equality-based version of Church’s simple type the-
ory with a Hilbert style proof system and a notion of interpretation (called
general models) following the Henkin-Andrews approach is presented in [4].
Furthermore in [4] one can find proofs of soundness, completeness and the
usual results associated with first-order logic such as the Lowenheim-Skolem
Theorem and the Compactness Theorem.

Church’s simple type theory is sometimes conflated with the logics under-
lying the various interactive theorem provers of the HOL family [18, 19, 29].
However, the HOL systems include important extensions such as polymor-
phism and type definitions. One cannot simply rely on the work of Henkin
and Andrews to obtain a general notion of interpretation for which the HOL
systems are sound and complete. The chapter on semantics of HOL given
in [18] (whose authorship is reportedly attributed to Andrew Pitts) does
deal with interpreting polymorphic types, terms and propositions, but only
describes a standard set theoretic semantics (i.e., where all arrow types are
interpreted as the set of “all” functions with a given domain and codomain).
It is well-known that validity relative to standard set theoretic semantics is
not recursively enumerable (also proven in [4]), so that there is no hope of
finding a recursively enumerable sound and complete proof system relative
to such a semantics.

As a brief aside, we note there has been some work generalizing Henkin-
Andrews style semantics to deal with polymorphism [10]. It seems nontrivial
to combine handling polymorphism with type definitions. Consider the fol-
lowing polymorphic proposition:

∀α.(∃xyz : α.x 6= y ∧ x 6= z ∧ y 6= z)
→ (∃xyzw : α.x 6= y ∧ x 6= z ∧ x 6= w ∧ y 6= z ∧ y 6= w ∧ z 6= w).

The proposition is satisfiable if there is an interpretation with no 3 element
type. (It is up to the reader to decide if there is an interpretation with
no 3 element type.) With type definitions, it should be easy to define a 3
element type (ensuring every interpretation has one) making the proposition
unsatisfiable. Without type definitions it is easy to imagine a model in which
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the interpretation of every type is either a power of 2 or infinite. Once type
definitions are included one essential needs a comprehension principle for the
universe of types.

For more serious extensions of Church’s simple type theory – such as the
Calculus of Inductive Constructions – there does not seem to be an effort
to create a Henkin-Andrews notion of interpretation for which one could
prove soundness and completeness. Instead research into semantics for type
theories has tended to go in the direction of category theory [24, 22] and the
most interesting interpretations are not classical.

In terms of soundness alone, there is one well-known set theoretic inter-
pretation of type theories like the Calculus of Inductive Constructions. The
interpretation is classical, extensional and satisfies proof irrelevance.1 It was
described by Werner [32] and Aczel [2] with more details found in the works
of Werner, Lee and Barras [25, 7]. In this model, the universe of propositions
is interpreted as a two element set – one of which is empty (having no proofs)
representing “false” and the other being a singleton (having one proof) repre-
senting “true.” Being a two element set makes it essentially the same as the
interpretation of the type of booleans, as seems to be the intended treatment
of propositions as booleans in SMT. Types are interpreted as sets (including
the empty set) which live in some universe closed under various set theoretic
operations. Coq is a well-known proof assistant based on the Calculus of In-
ductive Constructions and each type universe is closed under the formation
of (dependent) function types and inductively defined types. The Werner-
Aczel style of interpretation would interpret each of Coq’s universes as a set
U closed under the corresponding set-theoretic operations (e.g., if A and B
are in the set U , then the set BA of functions is in the set U).

An alternative to attempting to obtain a Henkin-Andrews style semantics
for which soundness and completeness can be proven is to simply take the
standard set theoretic semantics but allow the model of the underlying set
theory to change. That is, instead of defining a proposition as valid if it
is true in every standard set theoretic interpretation, one could define it as
being valid if it is true in every standard set theoretic interpretation living
in a model of, say, first-order ZFC. Validity would then become recursively
enumerable again and we clearly have a complete proof system (given by any
proof system for first-order ZFC). As far as the author is aware, no one has
investigated this approach, but it is essentially what is suggested (using a

1Proof irrelevance means all proofs of a given proposition are equal.
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higher-order set theory instead of first-order ZFC) in Section 4 below.

3 Obvious Candidates for Proofs: CIC Proofs

If the decision is for SMT3 to be sufficiently compatible with the Calculus
of Inductive Constructions, then there is an obvious option as a notion of an
“independently checkable proof” – a proof term in the Calculus of Inductive
Constructions. The current description of SMT3 makes it seem likely that a
CIC type universe Type

1
could be fixed and variables that range over types

would range over this fixed universe. In that case, SMT3 kinds could be
translated to terms that return Type

1
(and whose types live in the next

universe, Type
2
), SMT3 types could be translated into terms of type Type

1

and SMT3 propositions could be translated into terms of type bool or Prop.
There are a few potential problems, two of which are obvious. It could be

that SMT3 types are assumed to be nonempty, in which case this would need
to be accounted for during the translation.2 It could also be the case that
the SMT3 type theory is extensional in a way CIC is not, e.g., terms of an
SMT type vector (n+1) might also be considered to have type vector (1+n),
where a coercion would be required in CIC.

The last question is whether to translate SMT3 propositions to bool or
Prop. In order for the translated SMT3 propositions to potentially have CIC
proofs, the translation must have type Prop. Even if the translation returns
a bool it can be coerced to have type Prop via λx : bool.x = true. However,
this does not completely resolve the issue. In CIC, equality has type ∀α :
Type.α → α → Prop and quantifiers have type ∀α : Type.(α → Prop) → Prop.
Clearly when translating from SMT3 propositions involving quantifiers and
equations we will obtain propositions in CIC that we may need to coerce back
into being booleans for some purposes. If we assume excluded middle and
propositional extensionality in CIC, it is possible to prove Prop has exactly
two elements, making it almost isomorphic to bool. However, there is no term
of type Prop → bool acting as the inverse of λx : bool.x = true. An obvious
solution to this is simply to assume the existence of such an inverse (as a
slight strengthening of excluded middle and propositional extensionality).3

2The current SMT3 proposal suggest Hilbert epsilon style choice operator. If types are

allowed to be empty, then the meaning of such operators on empty types will need to be

clarified.
3In Coq one can assume a Hilbert epsilon choice operator for inhabited types and use
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It seems likely that (with sufficiently many mathematical assumptions
added to CIC) a translation from SMT3 propositions to CIC propositions
would not be difficult to obtain. Then the standard notion of “independently
checkable proof” would simply be a proof term for the CIC proposition. As
an additional bonus, there are already multiple systems (e.g., Coq, Matita [6],
Agda and Lean) that could check such a proof.

4 Second Obvious Candidate for Proofs: Set

Theory

As a second possible notion of proofs, let us consider the possibility of simply
using a Werner-Aczel style (classical, extensional, proof irrelevant) interpre-
tation of SMT3 and take proofs to be proofs of the resulting set theoretic
propositions. Since type theory is the dominant paradigm in interactive the-
orem proving at the moment, the possibility of using set theory might be
dismissed out of hand. A common objection is that set theory requires in-
finitely many axioms, though this is no longer true if one works in a slightly
stronger set theory than first-order ZFC axiomatized in Church’s type the-
ory. Furthermore, a natural deduction proof system for Church’s type theory
has a well known notion of proof term. To make the case that the option of
using set theory should at least be considered, we assert three claims.

Claim 1: Set theory has been the most commonly accepted foundation
of mathematics for over a century, and continues to remain so.

Claim 2: Church’s simple type theory is a concise language extending
first-order logic in which many set theories have a finite axiomatization.

Claim 3: The Curry-Howard correspondence [21] gives a well-understood
notion of proof term for a natural deduction proof system for an appropriate
presentation of Church’s simple type theory.

Together these assertions are intended to make clear that using proof
terms for a formal set theory is based on a long history and does not require
novel ideas. The first axiom system for set theory dates back to Zermelo in
1908 [33] and even the addition of Tarski universes dates back to 1938 [30].
A typical complaint about set theory is that it has no finite first-order ax-
iomatization, and so one might think schemes are required. However, if we

this to define the inverse if one exists, so that one can obtain an isomorphism between

Prop and bool from classical extensionality principles in this way.
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pass from first-order logic to Church’s type theory it becomes easy to write
second-order axioms that would otherwise be schemes of infinitely many first-
order axioms [3, 17, 28, 12].4 Church’s type theory dates back to 1940 [13]
and Henkin’s completeness result dates back to 1950 [20]. As mentioned
above, Church’s type theory satisfies the usual first-order properties (relative
to Henkin-Andrews semantics), so using it as the underlying logic instead of
first-order logic is not such a radical change. Finally we note that the earli-
est proof checker, AUTOMATH [15, 16], dates back to 1968. AUTOMATH
represented proofs using a Curry-Howard style proof representation (inde-
pendently created by de Bruijn). In summary, all the ideas for having a
clear, simple formulation of set theory (with a finite presentation) – includ-
ing a notion of checkable proofs – are over half a century old. They are
mature, well-understood ideas. The worst one could say about some of the
ideas is that they may be out of fashion at the moment, but fashion is hardly
a reason to dismiss the ideas.

It is certainly conceivable that proof terms for propositions obtained by
translating from SMT3 problems to set theory via the Werner-Aczel approach
might turn out to be impractical, either because the proof terms are too large
or because their correctness is overly difficult to check. In order to make a
preliminary judgment about the practicality of the approach, let us consider
a few examples.

5 Examples

We now consider three examples. All the examples will only use features
of SMT2. In each case we will show the result of translating the problem
to a formal set theory and note there is either a formal proof of the set
theoretic proposition or a formal proof of its negation. We briefly describe
the proofs in each case. For the formal set theory we will use the Megalodon
system5 (the successor to the Egal system [12]). Megalodon can also produce
Proofgold (Curry-Howard style) proof terms6 presented in a simple to parse
prefix notation.7 While the Proofgold checker can be used for type checking

4These second-order axioms are technically stronger than the first-order versions, but

this is of no concern here.
5http://grid01.ciirc.cvut.cz/~chad/megalodon-1.7.tgz.
6https://proofgold.org
7The full data is available at http://grid01.ciirc.cvut.cz/~chad/smtsempfs.tgz.
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and proof checking the data, we claim that it is straightforward to implement
an independent proof checker. We allow ourselves to freely use previous
definitions or previously proven results (if they have been previously proven
in Megalodon and published in Proofgold documents). That is, we do not
need the proof term to contain a justification back to the axioms of set theory,
but only back to previously proven results.

We will only make use of the SMT2 sorts for booleans, integers and
arrays. The intended interpretations of these types are given by the SMT-
LIB Standard: Version 2.6 [8] (in text form) as follows.

• Booleans (Page 37 of [8]):

"For every expanded signature Sigma, the instance of Core with that

signature is the theory consisting of all Sigma-models in which:

- the sort Bool denotes the set {true, false} of Boolean values;

- for all sorts s in Sigma,

- (= s s Bool) denotes the function that returns true iff its two

arguments are identical;

- (distinct s s Bool) denotes the function thatreturns true iff its

two arguments are not identical;

- (ite Bool s s) denotes the function thatreturns its second

argument or its third depending on whether its first argument is true

or not;

- the other function symbols of Core denote the standard Boolean

operators as expected."

The obvious two element set to take as the interpretation of the type
of booleans is the ordinal 2 = {0, 1} with 0 interpreting false and 1
interpreting true.

• Integers (Page 38 of [8]):

"For every expanded signature Sigma, the instance of Ints with that

signature is the theory consisting of all Sigma-models that interpret

- the sort Int as the set of all integers,

- the function symbols of Ints as expected."

We fix a set theoretic representation of integers (described below) and
use this fixed set to interpret the type of integers and the relevant
operations.

• Arrays (Page 39 of [8]):

"For every expanded signature Sigma, the instance of ArraysEx with

that signature is the theory consisting of all Sigma-models that

satisfy all axioms of the form below, for all sorts s1, s2 in Sigma:
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(forall ((a (Array s1 s2)) (i s1) (e s2))

(= (select (store a i e) i) e))

(forall ((a (Array s1 s2)) (i s1) (j s1) (e s2))

(=> (distinct i j) (= (select (store a i e) j) (select a j))))

(forall ((a (Array s1 s2)) (b (Array s1 s2)))

(=> (forall ((i s1)) (= (select a i) (select b i))) (= a b)))"

It is not difficult to see that a set satisfying the last axiom will be
isomorphic to a set of functions and in the isomorphic representation
select can be assumed to be functional application. We will apply this
simplification below. The only remaining condition is that the set of
functions is closed under the store function which (possibly) changes
the value of the function on one input.

5.1 Example 1: Induction

As a first simple example we consider induction on the natural numbers.
Here the natural numbers are considered as a predicate over the sort Int.

In SMT2 format we can assert induction fails (which should be unsatisfi-
able) by giving a predicate p which holds for 0 and is closed under successor
but does not hold for all integers n ≥ 0. Here is the SMT2 specification:

(declare-fun p (Int) Bool)

(assert (p 0))

(assert (forall ((?n Int)) (=> (<= 0 ?n) (=> (p ?n) (p (+ ?n 1))))))

(assert (not (forall ((?n Int)) (=> (<= 0 ?n) (p ?n)))))

To translate this into a set theoretical statement, we must give a specific
set representing integers. For natural numbers a reasonable option is to
take the finite ordinals (the members of ω). As part of a formalization of
Conway’s surreal numbers [14] we also have a − operation on all surreal
numbers (including ordinals). The details are not important here, but it is
sufficient to note that −0 = 0, −n /∈ ω if n ∈ ω and −− x = x for all surreal
numbers x. We take int to be the set ω ∪ {−n|n ∈ ω} and use int as the
fixed interpretation of the sort Int. In the Megalodon preamble file we use
this definition appears as follows:

Definition int : set := omega :\/: {- n|n :e omega}.

We also have a binary operation + on surreal numbers which behaves as
expected on int, as well as orderings < and ≤ on surreal numbers. In general
we will not give details about definitions unless they are relevant. We will
only state some relevant properties we use, but emphasize that all properties
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we use have been previously proven in Megalodon and published into the
Proofgold chain. There are no goals left open.

We have chosen to locally define bp as follows:

Let bp : set -> prop := fun b => 0 :e b.

We briefly consider the behavior of bp when applied to booleans (members
of the set {0, 1}). The negation of bp 0 is 0 /∈ 0 which is provable, so bp 0 acts
as the false proposition. On the other hand bp 1 is 0 ∈ 1 which is provable, so
bp 0 acts as the true proposition. Such local definitions act more as notation
that is translated away. Other definitions would also work.

The statement of the set theoretic translation of the SMT2 problem ap-
pears as follows in Megalodon:

Theorem example1ind_unsat:

forall p :e Bool :^: int,

bp (p 0)

-> (forall n :e int, 0 <= n -> bp (p n) -> bp (p (n + 1)))

-> ~(forall n :e int, 0 <= n -> bp (p n))

-> False.

Essentially that statement says the three (translated) assertions lead to
a contradiction. Note that since p 0 is a boolean (a set which is a member
of {0, 1}), the coercion bp is used to create the corresponding proposition
whenever necessary.

The proof in Megalodon proceeds as follows: we assume p is in the set
2int and assume the three properties hold. In the preamble there is a predi-
cate nat_p that holds for the finite ordinals. A previously proven induction
principle is included:

nat_ind : forall p:set->prop,

p 0

-> (forall n, nat_p n -> p n -> p (ordsucc n))

-> forall n, nat_p n -> p n.

This induction principle will form the core of the current proof.
We first prove nonnegative integers satisfy nat_p.

claim L1: forall n :e int, 0 <= n -> nat_p n.

The proof of this claim relies on results about surreal numbers, the −
operation and the < and ≤ relations.

We next prove n+ 1 = ordsucc n for n satisfying nat_p.

claim L2: forall n, nat_p n -> n + 1 = ordsucc n.

The proof of this claim uses previously proven results relating the behavior
of the surreal number operation + on natural numbers.

We can now prove the most important subclaim:
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claim L3: forall n, nat_p n -> bp (p n).

This claim is proven using nat_ind and L2 as well as a variety of results
about the behavior of natural numbers as surreal numbers relative to the
relations < and ≤.

From the first and third claim it is easy to obtain a proof

∀n ∈ int.0 ≤ n → bp (p n)

contradicting the last assumption of the problem and leading to a proof of
False as desired.

5.2 Example 2: Pigeonhole

Our second example will be two versions of the Pigeonhole Principle. We
use arrays from integers to integers (with some constraints) to play the role
of functions from finite ordinals to finite ordinals. In the first version we will
state that every array acting as a function from {0, . . . , n} to {0, . . . , n− 1}
is not injective. In SMT2 format we assert the negation of this statement as
follows:

(assert

(not

(forall

((?n Int))

(=> (>= ?n 0)

(forall

((?f (Array Int Int)))

(=> (forall ((?i Int))

(=> (and (<= 0 ?i) (<= ?i ?n))

(and (<= 0 (select ?f ?i)) (< (select ?f ?i) ?n))))

(exists ((?i Int) (?j Int))

(and (<= 0 ?i) (< ?i ?j) (<= ?j ?n)

(= (select ?f ?i) (select ?f ?j))))))))))

In order to translate this SMT2 problem into a statement of formal set
theory we must interpret arrays. We will translate to a statement that univer-
sally quantifies over appropriate interpretations of arrays. An interpretation
of arrays is a (meta-)function Array taking two sets and returning a set
satisfying the following property:

Definition Array_interp : (set -> set -> set) -> prop

:= fun Array =>

(forall X Y, Array X Y c= Y :^: X)

/\ (forall X Y, forall f :e Array X Y, forall x :e X, forall y :e Y,

(fun u :e X => if u = x then y else f u) :e Array X Y).
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That is: for sets X and Y , Array X Y must be a set of functions from
X to Y that is closed under changing one value.8

Translating this to the formal set theory of Megalodon we have the fol-
lowing theorem:

Theorem PigeonHoleArrays_1_unsat :

forall Array:set -> set -> set,

Array_interp Array ->

~(forall n :e int, 0 <= n ->

forall f :e Array int int,

(forall i :e int, 0 <= i /\ i <= n ->

0 <= f i /\ f i < n)

-> (exists i j :e int, 0 <= i /\ i < j /\ j <= n /\ f i = f j))

-> False.

Again − is the unary minus on surreal numbers and < and ≤ are relations
on surreal numbers. In this case there are a few facts about integers which had
not been previously proven, so we proved them before proving the theorem
above. Here we simply state these results:

Theorem NegIntNat : forall x :e int, x < 0 -> nat_p (- x).

Theorem PosIntNat: forall x :e int, 0 < x -> nat_p x.

Theorem NNegIntNat1: forall x :e int, ~(x < 0) -> nat_p x.

Theorem NNegIntNat2: forall x :e int, 0 <= x -> nat_p x.

Using these results, along with a few others, we can prove a contradiction
by reducing to the following previously proven version of the Pigeonhole
principle:

PigeonHole_nat :

forall n, nat_p n ->

forall f:set -> set,

(forall i :e ordsucc n, f i :e n)

-> ~(forall i j :e ordsucc n, f i = f j -> i = j).

A second version of the Pigeonhole principle states that every (array
acting as an) injective function from {0, . . . , n − 1} into {0, . . . , n − 1} is
surjective. As an SMT2 problem this can be stated as follows:

(assert

(not

(forall

((?n Int))

(=> (>= ?n 0)

(forall

((?f (Array Int Int)))

8Note that this allows the set of arrays to be empty. If all types in SMT3 will be

assumed to be nonempty, then this definition should be changed.
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(=> (forall ((?i Int))

(=> (and (<= 0 ?i) (< ?i ?n))

(and (<= 0 (select ?f ?i)) (< (select ?f ?i) ?n))))

(=> (forall ((?i Int) (?j Int))

(=> (and (<= 0 ?i) (< ?i ?n) (<= 0 ?j) (< ?j ?n)

(= (select ?f ?i) (select ?f ?j)))

(= ?i ?j)))

(forall

((?j Int))

(=> (and (<= 0 ?j) (< ?j ?n))

(exists ((?i Int))

(and (<= 0 ?i) (< ?i ?n) (= (select ?f ?i) ?j))))))))))))

The corresponding Megalodon theorem looks as follows:

Theorem PigeonHoleArrays_2_unsat :

forall Array:set -> set -> set,

Array_interp Array ->

~(forall n :e int, 0 <= n ->

forall f :e Array int int,

(forall i :e int, 0 <= i /\ i < n ->

0 <= f i /\ f i < n)

-> (forall i j :e int,

0 <= i /\ i < n /\ 0 <= j /\ j < n /\ f i = f j

-> i = j)

-> (forall j :e int, 0 <= j /\ j < n

-> exists i :e int, 0 <= i /\ i < n /\ f i = j))

-> False.

The Megalodon proof proceeds by reducing to a similar previously proven
version of the Pigeonhole Principle. However, it would also be possible to
infer the second version from the first version simply by instantiating with
an array with one element changed.9

5.3 Example 3: Failure of Schroeder-Bernstein for Ar-

rays

As a final example, we consider the Schroeder-Bernstein property for arrays.
That is, we consider whether or not two types α and β must have a bijection
between them if there are injections from α into β and β into α. In this case
the negation of the property is satisfiable and we give an interpretation of
arrays for which the property fails. Usually in logic there is either a proof
on the one hand or a model on the other. However, in this case we can also
give a proof term for a proof of the negation of the set theoretical property
(where the negation is before the quantifier over possible interpretations of
arrays).

9We leave the details to the interested reader.
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For the SMT2 problem we let f and g be of appropriate array types and
assume f and g are injective. We then assume there does not exist a bijective
array.

(declare-fun f () (Array Int Int))

(declare-fun g () (Array Int Int))

(assert (forall ((?m Int) (?n Int)) (=> (= (select f ?m) (select f ?n)) (= ?m ?n))))

(assert (forall ((?m Int) (?n Int)) (=> (= (select g ?m) (select g ?n)) (= ?m ?n))))

(assert

(not (exists ((?h (Array Int Int)))

(and (forall ((?m Int) (?n Int)) (=> (= (select ?h ?m) (select ?h ?n)) (= ?m ?n)))

(forall ((?n Int)) (exists ((?m Int)) (= (select ?h ?m) ?n)))))))

The translation of this problem to a set theoretic proposition in Mega-
lodon appears as follows:

forall Array:set -> set -> set,

Array_interp Array ->

(forall f g :e Array int int,

(forall m n :e int, f m = f n -> m = n)

-> (forall m n :e int, g m = g n -> m = n)

-> ~(exists h :e Array int int,

(forall m n :e int, h m = h n -> m = n)

/\ (forall n :e int, exists m :e int, h m = n))

-> False)).

This is not provable. However, we can prove the negation of the propo-
sition (if we are careful to put the negation before the quantifier for the
interpretation of arrays).

Theorem SchroederBernsteinArrays_sat :

~(forall Array:set -> set -> set,

Array_interp Array ->

(forall f g :e Array int int,

(forall m n :e int, f m = f n -> m = n)

-> (forall m n :e int, g m = g n -> m = n)

-> ~(exists h :e Array int int,

(forall m n :e int, h m = h n -> m = n)

/\ (forall n :e int, exists m :e int, h m = n))

-> False)).

The most important choice for proving this negated proposition is prop-
erly instantiating for Array. We start by defining an injective function from
integers to natural numbers which sends negative integers x to (2(−x)) + 1
and nonnegative integers x to 2x.

set int_into_nat : set := (fun x :e int => if x < 0 then ordsucc (2 * (- x)) else 2 * x).

We can now inductively define the collection of all functions that are the
same as int_into_nat except on finitely many elements.

13



set ArrayIntInt_p : set -> prop := fun f =>

forall p:set -> prop,

p int_into_nat

-> (forall f, forall x y :e int, p f -> p (fun u :e int => if u = x then y else f u))

-> p f.

Finally we can define Array (the term we will use as the instantiation
for the quantified variable Array) to be the set of all functions unless both
arguments are the set of integers, in which case the functions must satisfy
ArrayIntInt_p.

set Array : set -> set -> set :=

fun A B =>

if A = int /\ B = int then

{f :e int :^: int | ArrayIntInt_p f}

else B :^: A.

Intuitively it should be clear that this choice satisfies Array_interp. It
is also the case that Array int int contains no bijection. Formally we prove
that every function satisfying ArrayIntInt_p has a lower bound and then
use this to conclude that such a function cannot be a surjection.

The Megalodon file containing all the definitions and proofs mentioned
above is less than 1000 lines. The full Proofgold document (containing the
proof terms for each proof) is 108KB.

6 Remarks about Completeness

A common belief is that it is impossible to have a recursively enumerable
proof system for higher-order logic. This is in conflict to the fact that many
proof systems are complete relative to Henkin-Andrews semantics. The rea-
son for the belief is the essential incompleteness relative to standard set
theoretic semantics, as mentioned earlier.

After adding set theoretic axioms to higher-order logic, one obtains cate-
goricity results relative to “standard models.” (This has even been formalized
in Coq, using what could be called “standard type theoretic models” [23].)
A consequence is that the continuum hypothesis is true in every standard
model or false in every standard model. The natural question (troubling
Cantor) is: “which is it?”

This natural question makes no sense from the Formalist point of view. A
Formalist only cares if the continuum hypothesis is provable. The continuum
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hypothesis is independent (even in higher-order set theory) and so it is not
provable and its negation is not provable.

The question may concern a Platonist. The unsatisfying answer from
the Platonist point of view is that the continuum hypothesis is true in every
standard model if and only if the continuum hypothesis is true in the platonic
universe of sets. One could say that information about the platonic universe
of sets “leaks through” when standard models are used.

Once we pass to Henkin-Andrews models of higher-order set theory, these
concerns go away. Even if the continuum hypothesis is true in every standard
model, it is false in some Henkin-Andrews models. Likewise, even if the
continuum hypothesis is false in every standard model, it is true in some
Henkin-Andrews models. Two Platonists who disagree whether or not the
continuum hypothesis is “actually” true or false, will still agree that it is true
in some Henkin-Andrews models and false in others.

This is the sense in which the proof system for higher-order set theory
could be considered “complete.” If the higher-order set theory were con-
sidered the semantics of SMT3 (via the Werner-Aczel proof irrelevant set
theoretic semantics), then one would not expect an SMT3 proof procedure
to be complete. (Or, put more positively, a complete proof procedure for
SMT3 would be an interesting result.)

7 Possible Research on Intermediate Proof Sys-

tems

One objection to taking either CIC or higher-order set theory as a standard
for independently checkable proof terms for SMT3 is that it could preempt
publishable research on other possible notions of proof objects. However, it
is common in the case of programming language research to create various
intermediate languages and factor compilation as translations through these
intermediate languages. Analogous research could be done on intermediate
proof languages. Such languages may not be able to represent unsatisfiabil-
ity proofs for every possible unsatisfiable SMT3 problem, but could handle
special cases (e.g., proofs by induction). It is easy to imagine intermediate
languages handling special cases efficiently while the translation from the in-
termediate language to the full proof terms for CIC or higher-order set theory
would be impractical.
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8 Conclusion

A finitely axiomatized set theory using Church’s type theory instead of first-
order logic provides a simple way of obtaining a candidate semantics for
SMT3. Via Curry-Howard, we also naturally obtain a candidate notion of
independently checkable proof term.
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