
Remarks about Satallax and Machine Learning

Chad E. Brown

August 8, 2018

At a high level here is how machine learning could, in principle, help an automated
prover like Satallax [3]: When Satallax is searching for a proof, it could optionally pass
messages to a “learner.” The learner could process this information and use it to help
construct an “advisor.” In later runs, Satallax could optionally pass messages to the
advisor and the advisor could give advice on how the search should proceed.

We briefly break the fourth wall. In Summer 2018 I added some code to a branch of
Satallax that connects to a learner and/or an advisor via a socket and passes relevant
messages during the search. This framework will allow people to experiment with
various machine learning tools that need not be coded in ocaml. I also hard coded
an advisor that can direct Satallax to find proofs of some very challenging examples
where there is very little hope of Satallax finding the proofs on its own. The hard
coded advisor makes it clear that there is a sufficient amount of information being
communicated to be helpful. It is unclear how such an advisor could be learned, and I
will leave this to others to investigate. The learning code Färber implemented directly
in Satallax [6] could be extracted to be a “learner” and “advisor” using this framework,
but there is no real benefit to doing this, since he wrote it in ocaml anyway. Now I will
go back to the normal pattern of writing “we.” For now.

In Section 1 we document the messages being passed from Satallax to a learner
with comments about what a learner might be expected to do with these messages. In
Section 2 we document the messages being passed between Satallax and the advisor.
In Section 3 we discuss five examples Satallax can prove with the advice of a hard-
coded advisor. Three of these examples require non-trivial higher-order instantiations
that are suggested directly by the advisor, and one example also makes use of a cut
formula suggested by the advisor. A significant challenge would be to find a collection of
problems from which Satallax and a learner could extract an advisor capable of solving
these same examples.

1 Communicating with a Learner

If Satallax is given arguments “-socketlearner n” then whenever it begins to try to
prove a subgoal, it attempts to connect to a local socket at port n and send messages
during the search. The connection is disconnected after each subgoal is either proven

1

or Satallax has given up. A single problem usually has one “subgoal” (to prove the
conjecture from the axioms), but under some flag settings Satallax will split one problem
into multiple subgoals.

Communication with a learner flows in only one direction: from Satallax to the
learner. Each message is sent by sending a byte identifying the type of message (indi-
cated below for each message) possibly followed by some serialized data. For the details
of the serialization of integers, strings, types and terms the reader can inspect the code.
Note that atoms and literals refer to integers that Satallax associates with closed propo-
sitions generated during the search. As is usual in higher-order, propositions are special
cases of terms.

The following messages are sent when Satallax inserts a search option into the
priority queue. Not every search option leads to sending a message. In particular,
enumeration-related options are not communicated to the learner.

4 When Satallax inserts a ProcessProp1 search option with priority p and proposition
ϕ, it sends the learner this message along with the integer p and term ϕ.1

5 When Satallax inserts a ProcessProp2 search option with priority p and proposition
ϕ, it sends the learner this message along with the integer p and term ϕ. This
might never happen. ProcessProp2 was somewhat experimental and I think it
still is.

6 When Satallax inserts a Mating search option with priority p, literals l1 and l2 and
corresponding propositions ps1 · · · sn and ¬pt1 · · · tn, it sends the the learner this
message along with integers p, l1, l2 and n followed by the terms s1, . . . , sn and
t1, . . . , tn.

7 When Satallax inserts a Confront search option with priority p, literals l1 and l2
with corresponding propositions s1 =α s2 and t1 6= t2, it sends the learner this
message along with integers p, l1 and l2, the simple type α and the terms s1, s2,
t1 and t2.

8 When Satallax inserts a NewInst search option with priority p and a term s of type
α, it sends the learner this message along with p, α and s.

The next messages provide helpful auxiliary information to the learner.

11 If x is the name of an eigenvariable generated to correspond to the formula ∀α.s

(meaning that if ∀αs is false, then sx will be false), then when x is created Satallax
sends this message along with the integer l1 (where l1 is the atom for ∀αs), the
integer l2 (where l2 is the literal for ¬(sx) after normalization), the type α and the
string x. This allows the learner to distinguish between different eigenvariables
(Skolem constants).

1I think this was the only kind of search option used for learning described in [6].

12 Everytime Satallax creates an atom a for a proposition ϕ, it sends the learner this
message with a and ϕ.

13 When Satallax adds a unit clause as an assumption for minisat (these correspond
to the axioms and negated conjecture in the higher-order problem), this message
is sent along with the single literal l in the unit clause.

14 When Satallax adds a clause l1| . . . |ln to the set of clauses for minisat, it sends the
learner this message with the n+ 1 integeras n, l1, . . ., ln.

15 When Satallax instantiates a formula ∀αs with a term t of type α, it sends this
message along with the litaral for ∀αs, the literal for st (after normalization), the
type α and the term t.

Finally two messages communicate the succesful end to a search:

16 The propositional clauses have been reported to be unsatisfiable by MiniSat [5].

17 E reported first-order unsatisfiability.

If the learner gets the message that MiniSat reported unsatisfiability, the learner
can find an unsatisfiable core of the propositional clauses (e.g., using PicoMus [2]) and
use this to determine which formulas, which eigenvariables and which instantiations
were actually used in the proof.

2 Communicating with an Advisor

There is a great deal of overlap in the messages from the previous section. However,
in this case Satallax often expects a response from the advisor and will wait to re-
ceive the expected response. Other than this, we have the following differences: there
are messages to request and send general suggestions and there are no messages to
communicate success to the advisor.

During each step when Satallax would ordinarily take the next search option from
the priority queue and process it, it first sends the byte 0 to the advisor:

0 The semantics of this message is to ask the advisor if it wants to suggest a new
instantiation or a new cut formula. The new instantiation or cut formula is
synthesized by the advisor.

This message can be responded to by one of 3 messages from the advisor.

0 The advisor makes no suggestion.

1 This message includes a term ϕ which should be a well-typed proposition (Satallax
will doublecheck this) intended as a “cut” formula or “internal lemma.” Satallax
creates creates two new ProcessProp1 search options for ϕ and ¬ϕ with default
priority 0.

2 This message includes a term s which should be well-typed and of some type α

(Satallax will check this and construct the α) and process s as a new instantiation
of type α (if it is really new).

This is the most significant part of the communication, and for the most interesting
examples in Section 3 there would be little hope of finding proofs if there were not these
kinds of open ended suggestions.

The following messages are sent when Satallax inserts a search option into the
priority queue. In each case Satallax expects a return message with the same first byte
(4-8) followed by an integer (the “adapted priority”). Note that lower values for the
priority means the option will be processed more quickly. Negative values are allowed,
but values less than −100 are treated as −100.2

4 When Satallax inserts a ProcessProp1 search option with priority p and proposition
ϕ, it sends the advisor this message along with the integer p and term ϕ. The
advisor returns 4 and an adapted priority p′.3

5 When Satallax inserts a ProcessProp2 search option with priority p and proposi-
tion ϕ, it sends the advisor this message along with the integer p and term ϕ.
The advisor returns 5 and an adapted priority p′. This might never happen.
ProcessProp2 was somewhat experimental and I think it still is.

6 When Satallax inserts a Mating search option with priority p, literals l1 and l2 and
corresponding propositions ps1 · · · sn and ¬pt1 · · · tn, it sends the the advisor this
message along with integers p, l1, l2 and n followed by the terms s1, . . . , sn and
t1, . . . , tn. The advisor returns 6 and an adapted priority p′.

7 When Satallax inserts a Confront search option with priority p, literals l1 and l2
with corresponding propositions s1 =α s2 and t1 6= t2, it sends the advisor this
message along with integers p, l1 and l2, the simple type α and the terms s1, s2,
t1 and t2. The advisor returns 7 and an adapted priority p′.

8 When Satallax inserts a NewInst search option with priority p and a term s of type
α, it sends the advisor this message along with p, α and s. The advisor returns 8
and an adapted priority p′.

Note that when the advisor suggests a cut or instantiation, Satallax still creates
corresponding search options which means new messages (4 or 8) will be sent to the
advisor to ask about the adapated priorities of these suggestions.

The next messages provide helpful auxiliary information to the advisor. Satallax
does not expect a response to these messages and does not wait for a response.

2In the hard-coded advisor, I mostly return −1 for “it’s good, so do it now” and add 500 to the
priority to say, “it’s bad, don’t do it unless nothing is better.”

3From inspecting the code, it seems only these priorities are potentially adapted based on the
learning described in [6].

11 If x is the name of an eigenvariable generated to correspond to the formula ∀α.s

(meaning that if ∀αs is false, then sx will be false), then when x is created Satallax
sends this message along with the integer l1 (where l1 is the atom for ∀αs), the
integer l2 (where l2 is the literal for ¬(sx) after normalization), the type α and the
string x. This allows the advisor to distinguish between different eigenvariables
(Skolem constants).

12 Everytime Satallax creates an atom a for a proposition ϕ, it sends the advisor this
message with a and ϕ.

13 When Satallax adds a unit clause as an assumption for minisat (these correspond
to the axioms and negated conjecture in the higher-order problem), this message
is sent along with the single literal l in the unit clause.

14 When Satallax adds a clause l1| . . . |ln to the set of clauses for minisat, it sends the
advisor this message with the n+ 1 integeras n, l1, . . ., ln.

15 When Satallax instantiates a formula ∀αs with a term t of type α, it sends this
message along with the litaral for ∀αs, the literal for st (after normalization), the
type α and the term t.

3 Examples with a Hard-Coded Advisor

We discuss five examples Satallax can prove with the help of a hard-coded advisor. The
first one is a very easy higher-order example that Satallax can also prove without help.
The second example is first-order and is intended to demonstrate why it is helpful for
the learner and advisor to distinguish between different eigenvariables. The last three
are very challenging, but simple to describe, higher-order problems. Satallax would
have a very difficult time proving any of these three without advice, and it is difficult
to see how one would automatically obtain an advisor capable of helping Satallax prove
them.

3.1 An Easy Higher-Order Example

Consider the following conjecture:

∀xyι.x 6= y → ∃pι→o.px ∧ ¬py.

Satallax would prove this conjecture by processing the negation of the conjecture and
subsequently generated subformulas obtaining eigenvariables a and b for the outer quan-
tifier and breaking down the implication to consider two formulas: a 6= b and (after
normalizing logical constants in terms of =, ∀ → and ⊥) ∀p.pa → pb. To continue,
an instantiation for the p must be given. In this case the instantiation λx.x = a leads
to a solution, and this instantiation is simple enough that it can be found by blind
enumeration.

Using the default strategy schedule the first mode Satallax finds a proof with is
mode371. Examining mode371 it is clear that its flag settings prefer generating instan-
tiations that involve equality and no other logical constants, and so with this mode,
Satallax can find a proof within a second.

Suppose we call satallax with mode371 while communicating with a learner.

time satallax -m mode371 -learnersocket 2323 neqexample.p

Connected to 2323

% SZS status Theorem

% Mode: mode371

% Inferences: 5

real 0m0.023s

user 0m0.012s

sys 0m0.008s

Satallax sends about fifty messages to the learner communicating which formulas cor-
respond to which atoms (integers), which eigenvariables correspond to which universal
formulas, which instantiations have been used, and so on. The higher-order instan-
tiations generated and communicated to the learner consist of the useful one in two
forms: λx.x = a and λx.a = x as well as the useless instantiation λx.b = a. The last
message indicates that E has found a refutation. A learner could cooperate with E
independently of Satallax to find which of the instantiations was used in the proof.

Alternatively we can call Satallax again with the same mode but with the flag USE E

set to false. In this case the search takes slightly longer and only terminates when
MiniSat can determine propositional unsatisfiability. In this case the learner receives
about 70 messages. Since the learner has the same set of clauses MiniSat had, the
learner can find an unsatisfiabile core, e.g., with PicoMus [2]. In this case there are three
propositional clauses corresponding to the three higher-order instantiations λx.x = a,
λx.a = x and λx.b = a. To be specific for those unfamiliar with the interaction of
Satallax and MiniSat, there are MiniSat clauses:

-5 12

-5 13

-5 14

Satallax (and the learner, via messages of type 12) associates the following atoms with
the following formulas:

• 5 corresponds to ∀p.pa → pb.

• 12 corresponds to a = a → b = a.

• 13 corresponds to b = a → b = a.

• 14 corresponds to a = a → a = b.

Furthermore via messages of type 15 the learner knows the instantiations λx.x = a,
λx.b = a and λx.a = x correspond to the clauses −5|12, −5|13 and −5|14, respectively.
PicoMus finds an unsatisfatisfiable core using the clause −5|12, but not the clauses
−5|13 and −5|14. The learner can infer from this that λx.x = a is the instantiation
that led to a solution.

We can now run Satallax again calling the advisor. The advisor in this case has a
hard-coded test watching for a proposition of the form ∀p.pa → pb with some names
a and b. When it sees such a proposition being processed, it adds the instantiation
λx.x = a to a stack of suggestions. The next time the advisor is asked for a general
suggestion, it suggests this instantiation. Satallax can then easily find the proof, even
with modes other than mode371. For example using mode1 without the advisor, Satallax
cannot find a proof for the theorem within 30 seconds, but with the the advisor a proof
is found quickly.

time satallax -m mode1 -advisorsocket 2332 neqexample.p

Connected to 2332

% SZS status Theorem

% Mode: mode1

% Inferences: 7

real 0m0.005s

user 0m0.000s

sys 0m0.000s

In this example, it is easy to imagine that a machine learning algorithm could learn
to recognize formulas of the form ∀p.pa → pb and suggest the instantiation λx.x = a in
such a case.4

3.2 An Example with Many Eigenvariables

We next turn to a first-order example involving many eigenvariables. Let α and β be
base types. Let g : α, o : α → α → α and r : α → β → β → o be typed names. The
idea is that α is a type of binary trees constructed from g and o. For each binary tree,
r will give a binary relation on β.

Consider the following propositions:

total-g ∀xβ∃yβ r g x y

4Actually, under certain flag settings Satallax will recognize propositions of the form ∀p.ps → pt

with terms s, t not containing p and transform them into s = t to eliminate the higher-order quantifier
altogether.

comp ∀uα∀vα∀xβ∀yβ.r (o u v) x y ⇔ ∃zβ.r u x z ∧ r v z y

Intuitively it is easy to see that from these two axioms if we are given any term t of type
α constructed exclusively from o and g, then we can prove ∀x.∃y.r t x y. The proofs
of these theorems get progressively longer and generate more and more eigenvariables
from the total-g axiom. All the instantiations of type β will be eigenvariables, and
it is important to use the right instantiations. The example is partly intended to
demonstrate why it may be important for a learner and advisor to distinguish between
eigenvariables from different sources.5

Satallax can prove the theorem ∀x∃y.r (o g g) x y but already has trouble proving
∀x∃y.r (o (o g g) (o g g)) x y. The problem manyeigens2.p has the axioms above and the
conjecture ∀x∃y.r (o (o g g) (o g g)) x y. The hard-coded advisor recognizes a conjecture
of the form ∀x∃y.r (o (o g g) (o g g)) x y and then begins watching messages of type 11

to treat different eigenvariables as special. In particular, it recognizes the eigenvariable
a1 from the outermost universal quantifier in the conjecture, and then the next four
eigenvariables a2, a3, a4 and a5 from using total-g on the previous eigenvariable. When
the advisor is subsequently asked about the priority of instantiations of type β, it gives
a high priority of −1 to these first five eigenvariables and a low priority of 500 to all
others. When asked about the priority of instantiations of type α, it gives a high priority
for g and o g g and a low priority to all others, simply because I know these are the
instantiations required for this particular proof.

Using the advisor and mode mode371 Satallax can prove the example in about 30s.

time satallax -m mode371 -advisorsocket 2332 manyeigens2.p

Connected to 2332

% SZS status Theorem

% Mode: mode371

% Inferences: 83936

real 0m25.678s

user 0m20.456s

sys 0m0.872s

Presumably this could be improved, and probably by learning on similar examples.
In this case there is a clear collection of theorems to learn from, namely every theorem
of the form ∀x.∃y.r t x y where t is generated from g and o. Since all the proofs follow
the same pattern, it is realistic to imagine a learner could construct an advisor that
performs well on other theorems of this form.

5There are probably better examples. Now that I’m explaining this the example does not seem to
generate as many eigenvariables as I originally thought.

3.3 Replacement Implies Separation

We now turn to the first of the three seriously challenging higher-order examples. The
first is the proof that the separation axiom in set theory follows from the replacement
axiom. This is the first scheme proven in [4] and is not difficult for a human. Unfor-
tunately it requires a higher-order instantiation currently out of reach for higher-order
automated theorem provers. There is currently no mode with which Satallax has been
able to prove this example.

Let ∈: ι → ι → o be a constant which we will write in infix. The replacement
property can be stated is follows:

∀Aι.∀rι→ι→o.(∀x.x ∈ A → ∀yzι.r x y∧r x z → y = z) → ∃Bι.∀y.y ∈ B ⇔ ∃x.x ∈ A∧r x y.

The separation property can be stated as follows:

∀Aι.∀pι→o.∃Bι.∀x.x ∈ B ⇔ x ∈ A ∧ p x.

While Satallax cannot currently prove separation from replacement on its own, it
can easily prove it by receiving advice from the hard-coded advisor:

time satallax -m mode300 -advisorsocket 2332 replimpsep.p

Connected to 2332

% SZS status Theorem

% Mode: mode300

% Inferences: 242

real 0m0.127s

user 0m0.008s

sys 0m0.004s

The advisor handles this example as follows. When the replacement axiom is pro-
cessed, it is recognized and the type ι and the constant ∈ are remembered. As search
proceeds the negated conjecture will lead to a proposition of the form

∀B.¬(∀x.x ∈ B ⇔ x ∈ A ∧ p x)

for eigenvariables A and p. The advisor recognizes this formula and remembers the A

and p. After both of the propositions have been recognized, the advisor pushes the
general suggestion of using the instantiation λxy.px ∧ x = y onto its suggestion stack.
This suggestion is given to Satallax the next time Satallax requests a general suggestion.

While giving this suggestion is clearly the most helpful advice, the rest of the proof
is still not completely trivial. After the suggestion has been given the advisor recognizes
future propositions which are known to be part of a proof and gives these a high priority
(and all other propositions a low priority). In addition, once the existential quantifier in
the replacement property has generated an eigenvariable as a witness, this eigenvariable

is explicitly suggested by the advisor as an instantiation, as this will be the witness for
the separation property. This, of course, makes the proof easy for Satallax.

In this case, it is not clear how such an advisor should be learned from examples.
Presumably there would need to be other examples which make successful use of an
instantiation of the form λxy.px ∧ x = y.

3.4 Injective Cantor

The injective form of Cantor’s Theorem was given as a challenge problem in [1] along
with a suggested idea for a proof [1]. It can be stated as follows:

¬∃f(ι→o)→ι.∀XYι→o.f X = f Y → X = Y.

Unlike the surjective form of Cantor’s Theorem, the injective version seems to require
a nontrivial instantiation and clever choices after this instantiation has been made.
As discussed in [1] considering a diagonal set of the form {f Y |¬Y (f Y)} leads to a
contradiction. However, representing this set in simple type theory requires the use of a
higher-order quantifier inside the higher-order instantiation. For example, the diagonal
set can be represented as follows:

D := λxι.∃Yι→o.x = f Y ∧ ¬Y x.

Generating such an instantiation by blind enumeration seems unlikely and it is not clear
how a learning algorithm would be encouraged to suggest it. Even once we have the
instantation, a cut-free proof would require some unintuitive steps.6 The more intuitive
step would be to simply give D (f D) as a cut formula (as is more or less suggested
in [1]).

The hard-coded advisor recognizes when a proposition asserting a name of a type
like (α → o) → α to be injective is processed. If such a proposition is recognized for
a name f , the term D above is constructed. Instead of simply suggesting this as an
instantiation, the advisor first suggests D (f D) as a cut formula and then suggests D
and f D as instantiations. Even with these suggestions, finding the proof still requires
the advisor to block unhelpful paths and to suggest an eigenvariable (coming from
the quantifier inside the D) as a useful instantiation. Once enough information was
hard-coded into the advisor, the problem became easy.7

6I encourage the reader to try this. The only assumption you have is injectivity of f . You are
allowed to use D but no cuts. What do you do? I know a way to proceed, shown to me by Peter
Andrews, but you have to do something that seems like it is obviously a bad idea. Ask me if you want
to know what I mean.

7The typical process of hard-coding the advisor was to run Satallax with the advisor for a few
seconds with both Satallax and the advisor giving verbose output. Using the output, I could check
by hand the latest propositions that should be “good” but were labeled by the advisor as “bad” (the
default). These propositions were added to the function adapting priorities so they would be recognized
as “good.” In many cases there were instantiations that also needed to either be suggested or at least
recognized as “good.” In every case, as soon as Satallax succeeded, I stopped hard-coding, but by that
point the problem was typically solved quickly.

time satallax -m mode300 -advisorsocket 2332 injcantor.p

Connected to 2332

% SZS status Theorem

% Mode: mode300

% Inferences: 13

real 0m0.031s

user 0m0.004s

sys 0m0.000s

Again, it is unclear how an algorithm could learn to synthesize either the instanti-
ation

D := λxι.∃Yι→o.x = f Y ∧ Y x

or the cut formula D (f D). I know of no other example that requires this instantiation.
It is conceivable a learner could start to recognize formulas that appear to say a

function f of type (α → o) → α is injective and in such cases suggest the D above and
the cut formula D (f D). This could be seen as a human writing a “tactic” and the
learner recognizing when to use it. On the other hand, it seems like a more successful
approach in such a case would be to include the instance of Injective Cantor for f if f
is recognized to be “probably” injective instead of trying to reprove Injective Cantor.

3.5 Commutativity of Addition

As a final challenge example, we consider commutativity of addition on the natural
numbers. This requires a proof by induction that also requires two subinductions. As
a higher-order theorem, this means there will be a higher-order quantifier that must be
instantiated in three different ways.

Let 0 : ι, s : ι → ι and a : ι → ι → ι be constants for 0, successor and addition. We
will write u+ v for a u v. Assume the induction principle:

∀Pι→o.P 0 → ((∀x.P x → P (s x)) → ∀x.P x)

Furthermore assume two axioms defining a:

∀y.0 + y = y

and
∀xy.(s x) + y = s (x+ y).

The conjecture we wish to prove is ∀x.∀y.x+ y = y + x.
If we were proving this in an interactive theorem prover, a reasonable approach is

to prove two lemmas by induction:

∀x.x+ 0 = x

and
∀xy.x+ (s y) = s (x+ y)

and then use these two lemmas to prove commutativity. An advisor might suggest these
lemmas as cut formulas. The current hard-coded advisor does not do this, but instead
inlines the subinductions when required.

The hard-coded advisor recognizes the induction axiom for a type ι, a constant 0
and a unary function s and remembers it. If it then sees a proposition of the form
¬∀y.c + y = y + c being processed, it remembers the addition symbol and the name
c (an eigenvariable in this particular proof). After seeing both the induction axiom
and the negation of the half quantified commutativity formula, the hard-coded advisor
begins to make the following suggested instantiations of type ι → o: λy.c + y = y + c

and λx.x + 0 = x. It also suggests instantiations 0 and c of type ι. After this the
advisor begins to adapt the priorities of propositions, instantiations and confrontations
(equational steps) to keep the search as directed as possible.

After instantiating the induction property with λy.c + y = y + c, a subformula
¬∀x.c+x = x+c → c+(s x) = (s x)+c will eventually be processed. As a consequence
an eigenvariable, which we call d, will be generated. After this eigenvariable has been
generated a new higher-order instantiation λx.x + (s d) = s (x + d) (corresponding to
the other subinduction) will be suggested, along with instantiations d and s d of base
type. Along the way certain other eigenvariables are generated and must be suggested
as instantiations.

For the most part the advisor proceeds by giving high priority to formulas it ex-
plicitly recognizes. However, if the formula is an equation or disequation where each
side has at most one addition operator, at most two occurrences of s and at most two
occurrences of 0, then it is also given high priority. Instantiations are given high priority
if they either names (including eigenvariables and 0) or the successor of a name.8

Once this is done, mode1 with help from the advisor can prove the theorem in about
a second.

time satallax -m mode1 -advisorsocket 2332 addcom.p

Connected to 2332

% SZS status Theorem

% Mode: mode1

% Inferences: 2600

real 0m1.208s

user 0m0.108s

sys 0m0.116s

Proofs by induction are typically hard for higher-order automated theorem provers,
but this case in which three inductions must be done is far out of reach of current

8Keep in mind there is a difference between the advisor suggesting an instantiation and the advisor
adapting priorities of an instantiation Satallax has generated.

procedures. It’s conceivable that one could have a collection of induction proofs easy
enough for Satallax to do, but it is unclear how it could learn from those proofs to build
an advisor capable of directing Satallax to prove commutativity of addition.

4 Conclusion

The hard-coded advisor demonstrates that it is possible to take information Satallax
generates during search and direct it in a way to obtain proofs that are otherwise out
of reach. The real challenge is to use machine learning to automatically generate the
advisor using data from successful searches.

In these last three of the five examples, I cannot see how this could possibly be done.
Fortunately, this is more of a challenge for machine learning than automated theorem
proving, so it is not necessary for me to see how it could be done. I can simply pose it
as a challenge.

From a pure automated theorem proving perspective, automatically proving the last
three examples looks hopeless. Since the examples are actually not difficult mathemat-
ical problems at all, my conclusion is I should stop doing higher-order theorem proving.
First-order set theory is calling me again.

References

[1] Peter B. Andrews, Matthew Bishop, and Chad E. Brown. System Description:
TPS: A Theorem Proving System for Type Theory. In Automated Deduction -
CADE-17, volume 1831 of Lecture Notes in Artificial Intelligence, pages 164–169.
Springer-Verlag, 2000.

[2] Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and
Computation (JSAT, 2008.

[3] Chad E. Brown. Reducing higher-order theorem proving to a sequence of SAT
problems. Journal of Automated Reasoning, pages 57–77, 2013.

[4] Library Committee. Boolean properties of sets — definitions, April 2002.

[5] Niklas Een and Niklas Sörensson. An extensible sat-solver [ver 1.2], 2003.

[6] Michael Färber and Chad E. Brown. Internal guidance for satallax. In Nicola
Olivetti and Ashish Tiwari, editors, Automated Reasoning - 8th International Joint
Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings,
volume 9706 of Lecture Notes in Computer Science, pages 349–361. Springer, 2016.

	Communicating with a Learner
	Communicating with an Advisor
	Examples with a Hard-Coded Advisor
	An Easy Higher-Order Example
	An Example with Many Eigenvariables
	Replacement Implies Separation
	Injective Cantor
	Commutativity of Addition

	Conclusion

