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We will consider ten propositions in a fragment of the language of SUMO. The ten propositions are
about the obligation to brush one’s teeth.

1. (modalAttribute pObligation ⇔ (¬modalAttribute (¬p)Permission)).

2. (confersObligation (∀d.((instance dDay) ⇒ (∃b.((instance bBrushingTeeth) ∧ ((during b (WhenFn d)) ∧
(agent bMe))))))MyMomMe).

3. (hasAuthorityOverMyMomMe).

4. (∀a1.(∀a2.((confersObligation p a1 a2) ⇒ (holdsObligation p a2)))).

5. (∀u.(∀a.((holdsDuring t ((hasAuthorityOver u a)∧(confersObligation f u a))) ⇒ (holdsDuring t (desires a f))))).

6. (∀u.(∀a.(((hasAuthorityOver u a)∧(confersObligation (holdsDuring t f)u a)) ⇒ (desires a (holdsDuring t f))))).

7. (∀u.(∀a.(((hasAuthorityOver u a) ∧ (confersObligation f u a)) ⇒ (desires a f)))).

8. (∀a.((holdsObligation f a) ⇒ modalAttribute f Obligation)).

9. (∀a.((holdsRight f a) ⇒ modalAttribute f Permission)).

10. (¬(holdsRight (∃d.((instance dDay)∧(¬(∃b.((instance bBrushingTeeth)∧((during b (WhenFn d))∧(agent bMe)))))))Me)).

A sufficient fragment to cover these ten propositions is given by the following grammar for propositions
and individuals where we allow variables (p) ranging over propositions, variables (t) ranging over time and
variables (a, u, x, . . .) ranging over individuals.

Time (τ) ::= t (only variables for now)

Ind (µ, ν) ::= Me|MyMom|Day|BrushingTeeth|WhenFn µ

Prop (ϕ,ψ) ⊤|⊥|¬ϕ|ϕ ∧ ψ|ϕ⇒ ψ|ϕ⇔ ψ|∀x.ϕ|∃x.ϕ

instance µ ν|during µ ν|hasAuthorityOver µ ν|agent µ ν

modalAttribute ϕ Obligation|modalAttribute ϕ Permission

confersObligation ϕ µ ν|desires µ ϕ|holdsRight ϕ µ|holdsObligation ϕ µ

holdsDuring τ ϕ

The language is not ordinary first-order logic since there are modalities. The most obvious modalities
are the deontological operators modalAttribute ϕ Obligation and modalAttribute ϕ Permission. Propositions
of the form holdsDuring τ ϕ can be seen as using a temporal modality. We will also use two modalities to
allow implicit references to subjects and objects.

Kripke semantics gives an easy way to interpret modalities. Instead of interpreting propositions as
being true or false, we interpret propositions as a set of worlds. Informally speaking, propositions are
“true” if the set of worlds includes all worlds.

Since we will have four different kinds of modalities (time, subject, object and deontological) it would
seem we need four different kinds of worlds. However, we will combine these together by simply thinking
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of a world as a point in a four-dimensional space. Each dimension of the space corresponds to the relevant
modal information for that world.

With this in mind, we extend the language above to contain four new kinds of terms:

World ::= w (only variables for now)

Subj ::= s (only variables for now)

Obj ::= o (only variables for now)

Deon ::= e (only variables for now)

The four dimensions Time, Subj, Obj and Deon will each have their own accessibility relation. We can form
the compound accessibility relation on worlds by saying a world ξ is related to ξ′ iff when we project onto
all four dimensions the pairs of components satisfy the corresponding accessibility relations.

Now, we describe how to map the language above into a simply typed λ-calculus with multiple base
types. The mapping is intended to β-normalize to give multisorted first-order formulas (at least most of
the time).

As usual we will have a base type o of propositions. (This should not be confused with the notion
of proposition above, which will map to ω → o, e.g., sets of worlds.) The other base types will be ι
(individuals), ω (worlds), τ (time), σ (subjects), ξ (objects) and δ (deontology). All other types are of the
form α→ β where α and β are types. As is usual in Church style λ-calculus, we assume every variable has
a unique type. If a term s has type α→ β and a term t has type α, then (s t) has type β. If a variable x
has type α and a term t has type β, then (λx.t) has type α→ β.

Let us start by describing the infrastructure for worlds. We have the following typed constants.

• rtime : τ → τ → o (the accessibility relation for time)

• wtime : ω → τ (the projection function giving the time for each world)

• attime : τ → ω → ω (a function taking a time and a world and returning a world which is like the
given world but at a different time) The intention is that ω is a tuple like (t, s, o, e) and attime t′ ω

is the world (t′, s, o, e).

• reify time : τ → ι (take a time and turn it into an individual)

• rsubj : τ → τ → o (the accessibility relation for subjects)

• wsubj : ω → τ (the projection function giving the subject for each world)

• atsubj : τ → ω → ω (a function taking a subject and a world and returning a world which is like the
given world but at a different subject)

• reify subj : τ → ι (take a subject and turn it into an individual)

• robj : τ → τ → o (the accessibility relation for objects)

• wobj : ω → τ (the projection function giving the object for each world)

• atobj : τ → ω → ω (a function taking an object and a world and returning a world which is like the
given world but at a different object)

• reify obj : τ → ι (take a obj and turn it into an individual)

• rdeon : τ → τ → o (the accessibility relation for deontic dimension)

• wdeon : ω → τ (the projection function giving the deontic component for each world)

We can give a way to translate the original ten SUMO formulas into terms of type ω → o by giving
terms of appropriate type for each of the constructs in the fragment of the language. In many cases we
will simply assume we have a corresponding typed constant and use it:
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• Day : ι

• MyMom : ι

• Me : ι

• BrushingTeeth : ι

• WhenFn : ι→ ι

• instance : ι→ ι→ ω → o

• during : ι→ ι→ ω → o

• hasAuthorityOver : ι→ ι→ ω → o

• agent : ι→ ι→ ω → o

• desires : ι→ (ω → o) → ω → o

We will also assume a new typed constant:

• confers : (ω → o) → ι→ ι→ ω → o

For the remaining constructs of the SUMO fragment we will use special interpretations, indicated
below. For the special cases of the obligation and permission modalities we will use a box and diamond
operation specific to the deontological dimension δ.

For SUMO individuals above, we let [µ] : ι be the obvious corresponding term defined recursively. For
simplicity, we will also assume the SUMO individual variables correspond to variables of type ι with the
same name, SUMO time variables correspond to variables of type τ with the same name, and SUMO
propositional variables correspond to variables of type ω → o with the same name.

We will define a translation on some SUMO propositions ϕ yielding a term [ϕ] : ω → o below. Once
we have this translation we can translate the propositions above by universally quantifying over all free
variables. For propositional variables in the SUMO formula, this will correspond to quantifying over a
variable of type ω → o. We then universally quantify over worlds. In the end, the term we obtain is of the
form

∀...∀w : ω.[ϕ]w

We will often be able to β-normalize this formula and obtain a multisorted first-order formula.
Here is each case of the translation:

• [⊤] is λw.⊤, where ⊤ : o in the image is some notion of truth in Church’s type theory. The same
will be true for logical connectives and quantifiers below.

• [⊥] is λw.⊥.

• [¬ϕ] is λw.¬([ϕ]w).

• [ϕ ∧ ψ] is λw.(([ϕ]w) ∧ ([ψ]w)).

• [ϕ⇒ ψ] is λw.(([ϕ]w) ⇒ ([ψ]w)).

• [ϕ⇔ ψ] is λw.(([ϕ]w) ⇔ ([ψ]w)).

• [∀x.ϕ] is λw.∀x.[ϕ]w

• [∃x.ϕ] is λw.∃x.[ϕ]w

• [instance µ ν] is instance [µ] [ν]

• [during µ ν] is during [µ] [ν]
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• [hasAuthorityOver µ ν] is hasAuthorityOver [µ] [ν]

• [agent µ ν] is agent [µ] [ν]

• [modalAttribute ϕ Obligation] is λw.∀w′ : ω.rdeon (wdeon w) (wdeon w′) ⇒ [ϕ]w′

• [modalAttribute ϕ Permission] is λw.∃w′ : ω.rdeon (wdeon w) (wdeon w′) ∧ [ϕ]w′

• [confersObligation ϕ µ ν] is

λw.∃s : σ.reify subjs = [ν]∧ confers [ϕ] [µ] [ν] w∧∀w′.rdeon (wdeon (atsubj s w)) (wdeon w′) ⇒ [ϕ]w′

• [desires µ ϕ] is desires [µ] [ϕ]

• [holdsRight ϕ µ] is

λw.∃s : σ.reify subjs = [µ] ∧ ∃w′.rdeon (wdeon (atsubj s w)) (wdeon w′) ∧ [ϕ]w′

• [holdsObligation ϕ µ] is

λw.∃s : σ.reify subjs = [µ] ∧ ∀w′.rdeon (wdeon (atsubj s w)) (wdeon w′) ⇒ [ϕ]w′

• [holdsDuring τ ϕ] is λw.[ϕ](attime [τ ] w)

After translation and normalization five of the ten propositions become provable (under some assump-
tions). The specific five are 1, 4, 8, 9 and 10.
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