First-Order Instantiation-Based Tableau

Chad E. Brown ${ }^{1}$
Czech Technical University in Prague, Czech Republic

September 8, 2023

The results were supported by the Ministry of Education, Youth and Sports within the dedicated program ERC CZ under the project POSTMAN no. LL1902.

Outline

- Brief History: How did we get here?
- First-Order Tableau Rules for Satallax/Lash: Where are we?
- Instantiation Based
- No Free Variables, No Unification
- What are the Rules for Equality?
- Tableau Is Sometimes Better Than Resolution: Is it worth being here?
- Completeness: Are we really here?
- Alternative Rules: Where could we go from here?

Outline

History

Rules for Satallax/Lash

100 Problems

Completeness

Alternative Rules

Conclusion

A Little History

Beth, Hintikka, Smullyan, Fitting
Rule $A: \begin{aligned} & \frac{\alpha}{\alpha_{1}} \\ & \alpha_{2}\end{aligned} \quad \quad$ Rule $B: \frac{\beta}{\beta_{1} \mid \beta_{2}}$
Rule $C: \frac{\gamma}{\gamma(a)}$, where a is any parameter.
Rule $D: \frac{\delta}{\delta(a)}$, where a is a new parameter.
Smullyan 1995 First-Order Logic

A Little History

Beth, Hintikka, Smullyan, Fitting

$$
\text { Rule } A: \begin{aligned}
& \frac{\alpha}{\alpha_{1}} \\
& \alpha_{2}
\end{aligned} \quad \quad \text { Rule } B: \frac{\beta}{\beta_{1} \mid \beta_{2}}
$$

Rule $C: \frac{\gamma}{\gamma(a)}$, where a is any parameter.
Rule $D: \frac{\delta}{\delta(a)}$, where a is a new parameter.

$$
\text { Smullyan } 1995 \text { First-Order Logic }
$$

- Only parameters as terms
- No equality

A Little History

Beth, Hintikka, Smullyan, Fitting

$$
\begin{aligned}
& \text { Rule } A: \frac{\alpha}{\alpha_{1}} \quad \text { Rule } B: \frac{\beta}{\alpha_{2} \mid \beta_{2}} \\
& \text { Rule } C: \frac{\gamma}{\gamma(a)} \text {, where } a \text { is any parameter. } \\
& \text { Rule } D: \frac{\delta}{\delta(a)} \text {, where } a \text { is a new parameter. } \\
& \text { Smullyan } 1995 \text { First-Order Logic }
\end{aligned}
$$

- Only parameters as terms
- No equality
- Is every new rule the " ε-rule"?

Quick Higher-Order ATP History

Andrews, Huet

- Huet: Resolution, 1972
- Andrews: Several theoretical papers in the 1970s
- Leading to a system TPS started in the 1980s: TPS (Andrews' Higher-Order "Theorem Proving System")
- Automation based on:
- expansion proofs (like a compact sequent calculus) and
- mating method/connection method (close to tableau)

Higher-Order Tableau History

Kohlhase (TABLEAUX 1995) Higher-Order Tableaux
Like Smullyan's but with "free variables" for universals:

$$
\begin{aligned}
\frac{(\mathbf{A} \vee \mathbf{B})^{\mathrm{T}}}{\mathbf{A}^{\mathrm{T}} \mid \mathbf{B}^{\mathrm{T}}} \mathcal{H} \mathcal{T}(\wedge) & \frac{(\mathbf{A} \vee \mathbf{B})^{\mathrm{F}}}{\mathbf{A}^{\mathrm{F}}} \mathcal{H} \mathcal{T}(\vee) \\
\mathbf{B}^{\mathrm{F}} & \frac{(\neg \mathbf{A})^{\mathrm{T}}}{\mathbf{A}^{\mathrm{F}}} \mathcal{H} \mathcal{T}\left(\neg^{\mathrm{F}}\right) \frac{(\neg \mathbf{A})^{\mathrm{F}}}{\mathbf{A}^{\mathrm{T}}} \mathcal{H} \mathcal{T}\left(\neg^{\mathrm{T}}\right) \\
& \frac{\left(\Pi^{\alpha} \mathbf{A}\right)^{\mathrm{T}}}{\left(\mathbf{A} X_{\alpha}^{+}\right)^{\mathrm{T}}} \mathcal{H} \mathcal{T}(\text { all })
\end{aligned} \frac{\left(\Pi^{\alpha} \mathbf{A}\right)^{\mathrm{F}}}{\left(\mathbf{A} X_{\alpha}^{-}\right)^{\mathrm{F}}} \mathcal{H} \mathcal{T}(e x) .
$$

Higher-Order Tableau History

Kohlhase (TABLEAUX 1995) Higher-Order Tableaux
Like Smullyan's but with "free variables" for universals:

$$
\begin{aligned}
\frac{(\mathbf{A} \vee \mathbf{B})^{\mathrm{T}}}{\mathbf{A}^{\mathrm{T}} \mid \mathbf{B}^{\mathrm{T}}} \mathcal{H} \mathcal{T}(\wedge) & \frac{(\mathbf{A} \vee \mathbf{B})^{\mathrm{F}}}{\mathbf{A}^{\mathrm{F}}} \mathcal{H} \mathcal{T}(\vee) \\
\mathbf{B}^{\mathrm{F}} & \frac{(\neg \mathbf{A})^{\mathrm{T}}}{\mathbf{A}^{\mathrm{F}}} \mathcal{H} \mathcal{T}\left(\neg^{\mathrm{F}}\right)
\end{aligned} \frac{(\neg \mathbf{A})^{\mathrm{F}}}{\mathbf{A}^{\mathrm{T}}} \mathcal{H} \mathcal{T}\left(\neg^{\mathrm{T}}\right) .
$$

New "decomposition" rule:

$$
\frac{h \overline{\mathbf{U}^{n}} \not \neq^{?} h \overline{\mathbf{V}^{n}} \quad h \in \Sigma \cup \operatorname{Dom}\left(\Gamma^{0}\right) \cup \operatorname{Dom}\left(\Gamma^{-}\right)}{\mathbf{U}^{1} \not \neq ?_{?} \mathbf{V}^{1}|\ldots| \mathbf{U}^{n} \not \neq ?_{?} \mathbf{V}^{n}} \mathcal{H}(d e c)
$$

Higher-Order Tableau History

Kohlhase (TABLEAUX 1995) Higher-Order Tableaux
Like Smullyan's but with "free variables" for universals:

$$
\begin{aligned}
\frac{(\mathbf{A} \vee \mathbf{B})^{\mathrm{T}}}{\mathbf{A}^{\mathrm{T}} \mid \mathbf{B}^{\mathrm{T}}} \mathcal{H} \mathcal{T}(\wedge) & \frac{(\mathbf{A} \vee \mathbf{B})^{\mathrm{F}}}{\mathbf{A}^{\mathrm{F}}} \mathcal{H} \mathcal{T}(\vee) \\
\mathbf{B}^{\mathrm{F}} & \frac{(\neg \mathbf{A})^{\mathrm{T}}}{\mathbf{A}^{\mathrm{F}}} \mathcal{H} \mathcal{T}\left(\neg^{\mathrm{F}}\right)
\end{aligned} \frac{(\neg \mathbf{A})^{\mathrm{F}}}{\mathbf{A}^{\mathrm{T}}} \mathcal{H} \mathcal{T}\left(\neg^{\mathrm{T}}\right) .
$$

New "decomposition" rule:

$$
\frac{h \overline{\mathbf{U}^{n}} \not \neq^{?} h \overline{\mathbf{V}^{n}} \quad h \in \Sigma \cup \operatorname{Dom}\left(\Gamma^{0}\right) \cup \operatorname{Dom}\left(\Gamma^{-}\right)}{\mathbf{U}^{1} \not \neq ?_{?} \mathbf{V}^{1}|\ldots| \mathbf{U}^{n} \not \neq ?_{?} \mathbf{V}^{n}} \mathcal{H}(d e c)
$$

And other rules...

Higher-Order Tableau History

Konrad (TPHOLs 1998) HOT: A Concurrent Automated Theorem Prover Based on Higher-Order Tableaux Again...usual rules with "free variables" for universals:

$$
\begin{aligned}
& \begin{array}{ll}
\frac{\alpha}{\alpha_{1}} \text { alpha } & \frac{\beta}{\beta_{1} \mid \beta_{2}} \text { beta }
\end{array} \quad \frac{\neg-\boldsymbol{F}}{\alpha_{2}} \text { not } \\
& \frac{\delta}{\delta\left(\left(s k^{n} X_{1}, \ldots, X_{n}\right)\right)} \text { delta } \quad \frac{\gamma}{\gamma(V)} \text { gamma } \\
& \frac{h \overline{\mathbf{U}^{n}} \neq ? h \overline{\mathbf{V}^{n}}}{\mathbf{U}^{1} \not \neq ?_{?} \mathbf{V}^{1}|\ldots| \mathbf{U}^{n} \not \neq ?_{?} \mathbf{V}^{n}} d e c
\end{aligned}
$$

Higher-Order Tableau History

Konrad (TPHOLs 1998) HOT: A Concurrent Automated Theorem Prover Based on Higher-Order Tableaux Again...usual rules with "free variables" for universals:

$$
\begin{aligned}
& \begin{array}{ll}
\frac{\alpha}{\alpha_{1}} \text { alpha } & \frac{\beta}{\beta_{1} \mid \beta_{2}} \text { beta } \\
\alpha_{2} & \xrightarrow{7} \mathbf{F} \\
\text { not }
\end{array} \\
& \frac{\delta}{\delta\left(\left(s k^{n} X_{1}, \ldots, X_{n}\right)\right)} \text { delta } \quad \frac{\gamma}{\gamma(V)} \text { gamma } \\
& \frac{h \overline{\mathbf{U}^{n}} \not \neq ?_{?} h \overline{\mathbf{V}^{n}}}{\mathbf{U}^{1} \not \neq ?_{?} \mathbf{V}^{1}|\ldots| \mathbf{U}^{n} \nexists^{?} \mathbf{V}^{n}} \text { dec }
\end{aligned}
$$

Plus "link" rules (like "general mating" rule):

$$
\begin{array}{cc}
\begin{array}{c}
\mathbf{A}_{o} \\
\mathbf{B}_{o}
\end{array} & \begin{array}{l}
\mathbf{A}_{o} \\
\mathbf{B}_{o}
\end{array} \\
\hline \neg \mathbf{A} \not \neq ?_{?} \mathbf{B} & \operatorname{lin} k_{1}
\end{array} \begin{aligned}
& \mathbf{A} \not \boldsymbol{\neq}^{?} \neg \mathbf{B}
\end{aligned}
$$

Higher-Order Tableau History

Brown, Smolka (LMCS 2010) Analytic Tableaux for Simple Type Theory and its First-Order Fragment

Higher-Order Tableau History

Brown, Smolka (LMCS 2010) Analytic Tableaux for Simple Type Theory and its First-Order Fragment
Decomposition rule:

$$
\mathcal{T}_{\mathrm{DEC}} \frac{x s_{1} \ldots s_{n} \neq{ }_{\alpha} x t_{1} \ldots t_{n}}{s_{1} \neq t_{1}|\cdots| s_{n} \neq t_{n}} \quad n \geq 0
$$

Higher-Order Tableau History

Brown, Smolka (LMCS 2010) Analytic Tableaux for Simple Type Theory and its First-Order Fragment
Decomposition rule:

$$
\mathcal{T}_{\mathrm{DEC}} \frac{x s_{1} \ldots s_{n} \neq{ }_{\alpha} x t_{1} \ldots t_{n}}{s_{1} \neq t_{1}|\cdots| s_{n} \neq t_{n}} \quad n \geq 0
$$

Mating rule (instead of Konrad's Link rules):

$$
\mathcal{T}_{\mathrm{MAT}} \frac{x s_{1} \ldots s_{n}, \neg x t_{1} \ldots t_{n}}{s_{1} \neq t_{1}|\cdots| s_{n} \neq t_{n}} \quad n \geq 0
$$

Higher-Order Tableau History

Brown, Smolka (LMCS 2010) Analytic Tableaux for Simple Type Theory and its First-Order Fragment
Decomposition rule:

$$
\mathcal{T}_{\text {DEC }} \frac{x s_{1} \ldots s_{n} \neq{ }_{\alpha} x t_{1} \ldots t_{n}}{s_{1} \neq t_{1}|\cdots| s_{n} \neq t_{n}} \quad n \geq 0
$$

Mating rule (instead of Konrad's Link rules):

$$
\mathcal{T}_{\mathrm{MAT}} \frac{x s_{1} \ldots s_{n}, \neg x t_{1} \ldots t_{n}}{s_{1} \neq t_{1}|\cdots| s_{n} \neq t_{n}} n \geq 0
$$

Confrontation rule for positive equations:

$$
\mathcal{T}_{\text {CON }} \frac{s=_{\alpha} t, u \neq{ }_{\alpha} v}{s \neq u, t \neq u \mid s \neq v, t \neq v}
$$

Flashback: Takahashi's Forgotten Extensionality Rule

Takahashi (Proc. Japan Acad. 1968) Simple Type Theory of Genzten Style with the Inference of Extensionality

Flashback: Takahashi's Forgotten Extensionality Rule

Takahashi (Proc. Japan Acad. 1968) Simple Type Theory of Genzten Style with the Inference of Extensionality
Almost a (sequent calculus) "mating" rule:

$$
\frac{S_{1 i_{1}} \cdots S_{1 i_{m}} S_{2 i_{1}} \cdots S_{2 i_{m}}}{\left(d_{1}^{\tau_{1},}, \cdots, d_{n}^{\tau_{n}^{*}} \in e\left({ }^{\left(\tau_{1}, \cdots, r_{n}\right)}\right), \Gamma \rightarrow \Delta,\left(e_{1}^{\tau_{1}}, \cdots, e_{n}^{\tau_{n}} \in e^{\left(\tau_{1}, \cdots, r_{n}\right)}\right)\right.},
$$

where

1) $e^{\left(r_{1}, \cdots, r_{n}\right)}$ is a free variable or a constant;
2) at least one of $\tau_{1}, \cdots, \tau_{n}$ is $\neq 0$;
3) $\tau_{i}=0$ implies $d_{i}^{\ddagger i}=e_{i}^{f}$;
4) i_{1}, \cdots, i_{m} are all the indices i with $\tau_{i} \neq 0$;
5) if $\tau_{i}=1$, the $S_{1 i}$ and $S_{2 i}$ denote the sequents

$$
\begin{aligned}
& d_{i}^{\mp i}, \Gamma \rightarrow \Delta, e_{i}^{\mp i} \\
& e_{i}^{-i}, \Gamma \rightarrow \Delta, d_{i}^{\pi i}
\end{aligned}
$$

respectively;
6) if $\tau_{i}=\left(\sigma_{i 1}, \cdots, \sigma_{i r}\right)$, then $S_{1 i}$ and $S_{2 i}$ denote the sequents

$$
\begin{aligned}
& \left(a_{i 1}^{o_{i 1}}, \cdots, a_{i r}^{\sigma_{i r}} \in d_{i}^{z_{i}}\right), \Gamma \rightarrow \Delta,\left(a_{i q}^{\sigma_{i 1},}, \cdots, a_{i r}^{\sigma_{i r}} \in e_{i}^{\tau_{i}}\right) \text {, } \\
& \left(a_{i 1}^{o_{i 1}}, \cdots, a_{i r}^{o_{i r}} \in e_{i}^{e_{i}}\right), \Gamma \rightarrow \Delta,\left(a_{i 1}^{o_{i 1}}, \cdots, a_{i r}^{o_{i r}} \in d_{i}^{i}\right) \\
& \text { respectively (} a_{i 1}^{\sigma_{i 1}}, \cdots, a_{i r}^{\sigma_{i r}} \text { should not occur in the lower sequent of }
\end{aligned}
$$ this inference).

Outline

History

Rules for Satallax/Lash

100 Problems

Completeness

Alternative Rules

Conclusion

Satallax/Lash

- Satallax: Higher-order ATP based on a Henkin complete tableau calculus.
- Won TH0 division of CASC most years of the 2010s.
- Instantiation based - used no unification in the basic calculus.
- Able to reason with equations without rewriting deeply inside terms.
- Lash is a new implementation of Satallax's calculus.
- Cezary Kaliszyk reimplemented terms/ $\beta \eta$-normalization in C
- ...with perfect sharing.
- Lash is much faster than Satallax, but loses CASC.

Satallax/Lash First-Order Tableau

- A branch is a set of closed formulas.
- A branch is closed if either
- φ and $\neg \varphi$ are on the branch for some φ, or
- $s \neq s$ is on the branch for some s.
- A term t is discriminating for a branch if either $s \neq t$ or $t \neq s$ is on the branch (for some term s).

Satallax/Lash First-Order Tableau Rules (1)

Usual rules

$$
\begin{gathered}
\frac{\varphi \vee \psi}{\varphi \mid \psi} \quad \frac{\neg(\varphi \vee \psi)}{\neg \varphi, \neg \psi} \quad \frac{\neg \neg \varphi}{\varphi} \quad \frac{\forall x \cdot \varphi(x)}{\varphi(t)} t \text { discriminating } \\
\\
\frac{\neg \forall x \cdot \varphi(x)}{\neg \varphi(c)} c \text { fresh }
\end{gathered}
$$

Note: only use "discriminating" instantiations in \forall rule.
There are no free variables to be instantiated later.

Satallax/Lash First-Order Tableau Rules (2)

Other rules (involving disequations)

$$
\begin{array}{r}
\text { Mating } \frac{p\left(s_{1}, \ldots, s_{n}\right), \neg p\left(t_{1}, \ldots, t_{n}\right)}{s_{1} \neq t_{1}|\cdots| s_{n} \neq t_{n}} \\
\operatorname{Dec} \frac{f\left(s_{1}, \ldots, s_{n}\right) \neq f\left(t_{1}, \ldots, t_{n}\right)}{s_{1} \neq t_{1}|\cdots| s_{n} \neq t_{n}}
\end{array}
$$

Satallax/Lash First-Order Tableau Rules (3)

Equality rule.
What it's not:

$$
\text { Rewrite } \frac{s=t, \varphi[s]}{\varphi[t]}
$$

Satallax/Lash First-Order Tableau Rules (3)

Equality rule.
What it's not:

$$
\text { Rewrite } \frac{s=t, \varphi[s]}{\varphi[t]}
$$

There is no rewrite rule in the calculus.

Satallax/Lash First-Order Tableau Rules (3)

Equality rule.

What it is:

$$
\operatorname{Con} \frac{s=t, u \neq v}{s \neq u, t \neq u \mid s \neq v, t \neq v}
$$

Combining with a SAT Solver

- Both Satallax and Lash search by applying tableau rules, generating propositional clauses and incrementally sending the clauses to MiniSat.
- When the clauses are unsatisfiable, there is a tableau refutation.
- Details are here:

Brown (JAR 2013) Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems

Outline

History

Rules for Satallax/Lash

100 Problems

Completeness

Alternative Rules

Conclusion

Simple Clausal Problem Set

- 100 (first-order clausal) problems with similar format.
- All have 5 clauses.
- 2 Clauses (model must be infinite):
- $\forall x . f(x) \neq c$
- $\forall x y . f(x) \neq f(y) \vee x=y$
- 3 Clauses (model must be finite):
- Third clause: $\forall x y . x=y \vee r(x, y) \vee b(x, y)$
- Fourth clause: $\forall x_{0} \ldots x_{n} \cdots \neg r\left(x_{i}, x_{j}\right) \cdots$
- Fifth clause: $\forall x_{0} \ldots x_{n} \cdots \neg b\left(x_{i}, x_{j}\right) \cdots$
- The last two clauses always have between 3 and 10 literals.

Simplest of the 100

1. $\forall x \cdot f(x) \neq c$
2. $\forall x y . f(x) \neq f(y) \vee x=y$
3. Third clause: $\forall x y \cdot x=y \vee r(x, y) \vee b(x, y)$
4. Fourth clause: $\forall x_{0} x_{1} x_{2} . \neg r\left(x_{0}, x_{1}\right) \vee \neg r\left(x_{0}, x_{2}\right) \vee \neg r\left(x_{1}, x_{2}\right)$
5. Fifth clause: $\forall x_{0} x_{1} x_{2} . \neg b\left(x_{0}, x_{1}\right) \vee \neg b\left(x_{0}, x_{2}\right) \vee \neg b\left(x_{1}, x_{2}\right)$

Sketch of Lash Search

- Start with the branch with the 5 formulas.
- Technically there are no discriminating terms, so seed instantiations with the constant c.
- Instantiate $\forall x . f(x) \neq c$ with c.
- Now $f(c) \neq c$ is on the branch and both $f(c)$ and c are discriminating.
- Instantiate all \forall 's with c and $f(c)$.
- This gives more discriminating terms and leads to the \vee formulas.
- Split the V's and let MiniSat sort out unsatisfiability.
- Easiest of the 100 takes Lash $<50 \mathrm{~ms}$.

Comparison on Problem Set

- 5 minute timeout
- Lash: 82

Comparison on Problem Set

- 5 minute timeout
- Lash: 82
- Z3: 74

Comparison on Problem Set

- 5 minute timeout
- Lash: 82
- Z3: 74
- Equinox: 58 (Koen Claessen and Nick Smallbone)
- Satallax: 57
- cvc5: 57
- SATCOP: 56 (Michael Rawson)

Comparison on Problem Set

- 5 minute timeout
- Lash: 82
- Z3: 74
- Equinox: 58 (Koen Claessen and Nick Smallbone)
- Satallax: 57
- cvc5: 57
- SATCOP: 56 (Michael Rawson)
- Geo-III: 11 (Hans de Nivelle)
- iProver: 8 (Konstantin Korovin)
- Vampire: 3

Outline

History
\title{ Rules for Satallax/Lash }
100 Problems

Completeness

Alternative Rules

Conclusion

Completeness

- Suppose a branch A is not tableau refutable.
- A can be extended to a Hintikka set H.
- Model Existence: H has a model.
- The model construction follows ideas from Schütte 1960, Tait 1966, Takahashi 1967, Prawitz 1968, Takahashi 1968 and Andrews 1971.

Hintikka Set (1)

- $s \neq s \notin H$.
- $s \notin H$ or $\neg s \notin H$.
- If $\neg \neg \varphi \in H$, then $\varphi \in H$.
- If $\varphi \vee \psi \in H$, then $\varphi \in H$ or $\psi \in H$.
- If $\neg(\varphi \vee \psi) \in H$, then $\neg \varphi \in H$ and $\neg \psi \in H$.
- If $\forall x . \varphi(x) \in H$ and t discriminating on H, then $\varphi(t) \in H$.
- If $\neg \forall x . \varphi(x) \in H$, then $\varphi(t) \in H$ for some term t.

Hintikka Set (2)

- Assume signature just has c, f, r and b.
- (Dec) If $f(s) \neq f(t) \in H$, then $(s \neq t) \in H$.
- (Mat) If $r\left(s_{1}, s_{2}\right) \in H$ and $\neg r\left(t_{1}, t_{2}\right) \in H$, then $\left(s_{1} \neq t_{1}\right) \in H$ or $\left(s_{2} \neq t_{2}\right) \in H$.
- (Mat) If $b\left(s_{1}, s_{2}\right) \in H$ and $\neg b\left(t_{1}, t_{2}\right) \in H$, then $\left(s_{1} \neq t_{1}\right) \in H$ or $\left(s_{2} \neq t_{2}\right) \in H$.
- (Con) If $(s=t) \in H$ and $(u \neq v) \in H$, then $(s \neq u) \in H$ and $(t \neq u) \in H$ or $(s \neq v) \in H$ and $(t \neq v) \in H$.

Compatibility and Possible Values

- Terms s and t are compatible if $(s \neq t) \notin H$ and $(t \neq s) \notin H$.
- A discriminant Δ is a maximal set of compatible discriminating terms.
- Let D (domain of interpretation) be the set of all discriminants.
- Possible values: $s \triangleright \Delta$ means " s has Δ as possible value."
- Def: $s \triangleright \Delta$ if $s \in \Delta$ or s is not discriminating.
- Theorem: Every set of compatible terms has a common possible value.
- Theorem: If $s=t \in H$, then there is one Δ with $s \triangleright \Delta$ and also $t \triangleright \Delta$.

Possible Values For Terms

- Recall: D is the set of all discriminants.
- Let $g: D \rightarrow D$.
- Lift \triangleright to unary functions:
- Def: $f \triangleright g$ if $f(s) \triangleright g(\Delta)$ whenever $s \triangleright \Delta$.
- Thm: There is a g such that $f \triangleright g$.
- Interpretation of terms: interpret
- c as Δ_{c} where $c \triangleright \Delta_{c}$ and
- f by g where $f \triangleright g$.
- Induction: $\theta(s) \triangleright \llbracket s \rrbracket_{\alpha}$ if $\theta(x) \triangleright \alpha(x)$ for all x.
- If $(s \neq t) \in H$, then $\llbracket s \rrbracket \neq \llbracket t \rrbracket$.
- If $(s=t) \in H$, then $\llbracket s \rrbracket=\llbracket t \rrbracket$.

Possible Values For Formulas

- Recall: D is the set of all discriminants.
- Let 0 and 1 be possible values for formulas.
- Def:
- $\varphi \triangleright 0$ if $\varphi \notin H$.
- $\varphi \triangleright 1$ if $\neg \varphi \notin H$.
- Two formulas φ and ψ are compatible unless $\varphi \in H$ and $\neg \psi \in H$ or $\neg \varphi \in H$ and $\psi \in H$.
- Let $Q: D \times D \rightarrow\{0,1\}$ and q be the relation symbol r or b.
- Def: $q \triangleright Q$ if $q(s, t) \triangleright Q\left(\Delta, \Delta^{\prime}\right)$ whenever $s \triangleright \Delta$ and $t \triangleright \Delta^{\prime}$.
- Interpret r using R such that $r \triangleright R$ and b using B such that $b \triangleright B$.
- Theorem: This is a model of H.

Two Possible Values For Relations

- When choosing Q such that $q \triangleright Q$ there are two obvious choices:
- Minimum: $Q\left(\Delta, \Delta^{\prime}\right)$ holds if

$$
q(s, t) \in H \text { for some } s \in \Delta \text { and } t \in \Delta^{\prime}
$$

- Maximum: $Q\left(\Delta, \Delta^{\prime}\right)$ holds unless

$$
\neg q(s, t) \in H \text { for some } s \in \Delta \text { and } t \in \Delta^{\prime}
$$

- In the model existence proof above any choice works, but...

Outline

> History

> Rules for Satallax/Lash

> 100 Problems

> Completeness

Alternative Rules

Conclusion

Special Rule for Irreflexivity

- It is possible to avoid some \forall quantifiers by replacing a universally quantified formula with a rule.
- Example: $\forall x . \neg r(x, x)$.
- Incomplete approach: A is closed if $\neg r(s, s) \in H$.
- Instead consider this (complete) rule:

$$
\text { Irref } \frac{r(s, t)}{s \neq t}
$$

- Corresponding Hintikka condition:
- If $r(s, t) \in H$, then $(s \neq t) \in H$.
- If we choose minimum R with $r \triangleright R$, then $\forall x . \neg r(x, x)$ will hold.

Special Rule for Third Clause

- Rule replacing third clause: $\forall x y \cdot x=y \vee r(x, y) \vee b(x, y)$

$$
\text { Cover } \frac{\neg r(s, t)}{s=t \mid b(s, t)}
$$

- Hintikka condition:
- If $\neg r(s, t) \in H$, then $s=t \in H$ or $b(s, t) \in H$.
- Choosing $\max R$ ensures third clause holds.

Special Rule for Last Clauses

- Rule replacing fourth or fifth clauses, e.g.,

$$
\forall x_{0} x_{1} x_{2} \neg b\left(x_{0}, x_{1}\right) \vee \neg b\left(x_{0}, x_{2}\right) \vee \neg b\left(x_{1}, x_{2}\right)
$$

$$
\text { NotHom } \frac{b\left(s_{1}, t\right), b\left(s_{2}, u\right)}{s_{1} \neq s_{2} \mid \neg b(t, u)}
$$

- Hintikka condition:
- If $b\left(s_{1}, t\right), b\left(s_{2}, u\right) \in H$, then $s_{1} \neq s_{2} \in H$ or $\neg b(t, u) \in H$.
- Choosing min B ensures clause holds.

Results with Special Rules

- Implemented optional use of special rules in Lash.
- Caveat: Restriction to only create rules if they're easy to apply.
- Result: Lash essentially proves the same 82.
- Some are faster and some are slower.
- E.G.: One that took just over 2 minutes before takes only 16 seconds with one kind of special rule, but not the other.

Outline

History
Rules for Satallax/Lash
100 Problems
Completeness
Alternative Rules

Conclusion

Conclusion

- Instantiation-based tableau for first-order with equality
- Implemented in Satallax and its successor Lash
- Since no free variables, an incremental SAT solver can do most of the search

Conclusion

- Instantiation-based tableau for first-order with equality
- Implemented in Satallax and its successor Lash
- Since no free variables, an incremental SAT solver can do most of the search
- Set of problems where it outperforms resolution

Conclusion

- Instantiation-based tableau for first-order with equality
- Implemented in Satallax and its successor Lash
- Since no free variables, an incremental SAT solver can do most of the search
- Set of problems where it outperforms resolution
- Completeness proof from related higher-order contexts (Takahashi 1967-1968, Prawitz 1968, Andrews 1971)

Conclusion

- Instantiation-based tableau for first-order with equality
- Implemented in Satallax and its successor Lash
- Since no free variables, an incremental SAT solver can do most of the search
- Set of problems where it outperforms resolution
- Completeness proof from related higher-order contexts (Takahashi 1967-1968, Prawitz 1968, Andrews 1971)
- Modifications to Completeness Proof justify lifting some formulas to rules

Final Slide

Thank you!

Questions?

