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Outline

I Brief History: How did we get here?

I First-Order Tableau Rules for Satallax/Lash: Where are we?
I Instantiation Based
I No Free Variables, No Unification
I What are the Rules for Equality?

I Tableau Is Sometimes Better Than Resolution:
Is it worth being here?

I Completeness: Are we really here?

I Alternative Rules: Where could we go from here?
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Quick Higher-Order ATP History

Andrews, Huet
I Huet: Resolution, 1972

I Andrews: Several theoretical papers in the 1970s

I Leading to a system TPS started in the 1980s:
TPS (Andrews’ Higher-Order “Theorem Proving System”)

I Automation based on:
I expansion proofs (like a compact sequent calculus) and
I mating method/connection method (close to tableau)
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Flashback: Takahashi’s Forgotten Extensionality Rule

Takahashi (Proc. Japan Acad. 1968) Simple Type Theory of
Genzten Style with the Inference of Extensionality

Almost a (sequent calculus) “mating” rule:
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Satallax/Lash

I Satallax: Higher-order ATP based on a Henkin complete
tableau calculus.

I Won TH0 division of CASC most years of the 2010s.
I Instantiation based – used no unification in the basic calculus.

I Able to reason with equations without rewriting deeply inside
terms.

I Lash is a new implementation of Satallax’s calculus.

I Cezary Kaliszyk reimplemented terms/βη-normalization in C

I ...with perfect sharing.

I Lash is much faster than Satallax, but loses CASC.



Satallax/Lash First-Order Tableau

I A branch is a set of closed formulas.

I A branch is closed if either
I ϕ and ¬ϕ are on the branch for some ϕ, or
I s 6= s is on the branch for some s.

I A term t is discriminating for a branch if either s 6= t or t 6= s
is on the branch (for some term s).



Satallax/Lash First-Order Tableau Rules (1)

Usual rules

ϕ ∨ ψ
ϕ|ψ

¬(ϕ ∨ ψ)

¬ϕ,¬ψ
¬¬ϕ
ϕ

∀x .ϕ(x)

ϕ(t)
t discriminating

¬∀x .ϕ(x)

¬ϕ(c)
c fresh

Note: only use “discriminating” instantiations in ∀ rule.
There are no free variables to be instantiated later.



Satallax/Lash First-Order Tableau Rules (2)

Other rules (involving disequations)

Mating
p(s1, . . . , sn), ¬p(t1, . . . , tn)

s1 6= t1| · · · |sn 6= tn

Dec
f (s1, . . . , sn) 6= f (t1, . . . , tn)

s1 6= t1| · · · |sn 6= tn



Satallax/Lash First-Order Tableau Rules (3)

Equality rule.
What it’s not:

Rewrite
s = t, ϕ[s]

ϕ[t]

There is no rewrite rule in the calculus.
What it is:

Con
s = t, u 6= v

s 6= u, t 6= u|s 6= v , t 6= v
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Combining with a SAT Solver

I Both Satallax and Lash search by applying tableau rules,
generating propositional clauses and incrementally sending the
clauses to MiniSat.

I When the clauses are unsatisfiable, there is a tableau
refutation.

I Details are here:

Brown (JAR 2013) Reducing Higher-Order Theorem Proving
to a Sequence of SAT Problems
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Simple Clausal Problem Set

I 100 (first-order clausal) problems with similar format.

I All have 5 clauses.

I 2 Clauses (model must be infinite):
I ∀x .f (x) 6= c
I ∀xy .f (x) 6= f (y) ∨ x = y

I 3 Clauses (model must be finite):
I Third clause: ∀xy .x = y ∨ r(x , y) ∨ b(x , y)
I Fourth clause: ∀x0 . . . xn. · · · ¬r(xi , xj) · · ·
I Fifth clause: ∀x0 . . . xn. · · · ¬b(xi , xj) · · ·

I The last two clauses always have between 3 and 10 literals.



Simplest of the 100

1. ∀x .f (x) 6= c

2. ∀xy .f (x) 6= f (y) ∨ x = y

3. Third clause: ∀xy .x = y ∨ r(x , y) ∨ b(x , y)

4. Fourth clause: ∀x0x1x2.¬r(x0, x1) ∨ ¬r(x0, x2) ∨ ¬r(x1, x2)

5. Fifth clause: ∀x0x1x2.¬b(x0, x1) ∨ ¬b(x0, x2) ∨ ¬b(x1, x2)



Sketch of Lash Search

I Start with the branch with the 5 formulas.

I Technically there are no discriminating terms, so seed
instantiations with the constant c .

I Instantiate ∀x .f (x) 6= c with c .

I Now f (c) 6= c is on the branch and both f (c) and c are
discriminating.

I Instantiate all ∀’s with c and f (c).

I This gives more discriminating terms and leads to the ∨
formulas.

I Split the ∨’s and let MiniSat sort out unsatisfiability.
I Easiest of the 100 takes Lash < 50 ms.



Comparison on Problem Set

I 5 minute timeout
I Lash: 82

I Z3: 74
I Equinox: 58 (Koen Claessen and Nick Smallbone)
I Satallax: 57
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I SATCOP: 56 (Michael Rawson)
I Geo-III: 11 (Hans de Nivelle)
I iProver: 8 (Konstantin Korovin)
I Vampire: 3



Comparison on Problem Set

I 5 minute timeout
I Lash: 82
I Z3: 74

I Equinox: 58 (Koen Claessen and Nick Smallbone)
I Satallax: 57
I cvc5: 57
I SATCOP: 56 (Michael Rawson)
I Geo-III: 11 (Hans de Nivelle)
I iProver: 8 (Konstantin Korovin)
I Vampire: 3



Comparison on Problem Set

I 5 minute timeout
I Lash: 82
I Z3: 74
I Equinox: 58 (Koen Claessen and Nick Smallbone)
I Satallax: 57
I cvc5: 57
I SATCOP: 56 (Michael Rawson)

I Geo-III: 11 (Hans de Nivelle)
I iProver: 8 (Konstantin Korovin)
I Vampire: 3



Comparison on Problem Set

I 5 minute timeout
I Lash: 82
I Z3: 74
I Equinox: 58 (Koen Claessen and Nick Smallbone)
I Satallax: 57
I cvc5: 57
I SATCOP: 56 (Michael Rawson)
I Geo-III: 11 (Hans de Nivelle)
I iProver: 8 (Konstantin Korovin)
I Vampire: 3



Outline

History

Rules for Satallax/Lash

100 Problems

Completeness

Alternative Rules

Conclusion



Completeness

I Suppose a branch A is not tableau refutable.

I A can be extended to a Hintikka set H.

I Model Existence: H has a model.
I The model construction follows ideas from Schütte 1960, Tait

1966, Takahashi 1967, Prawitz 1968, Takahashi 1968 and
Andrews 1971.



Hintikka Set (1)

I s 6= s /∈ H.

I s /∈ H or ¬s /∈ H.

I If ¬¬ϕ ∈ H, then ϕ ∈ H.

I If ϕ ∨ ψ ∈ H, then ϕ ∈ H or ψ ∈ H.

I If ¬(ϕ ∨ ψ) ∈ H, then ¬ϕ ∈ H and ¬ψ ∈ H.

I If ∀x .ϕ(x) ∈ H and t discriminating on H, then ϕ(t) ∈ H.

I If ¬∀x .ϕ(x) ∈ H, then ϕ(t) ∈ H for some term t.



Hintikka Set (2)

I Assume signature just has c , f , r and b.

I (Dec) If f (s) 6= f (t) ∈ H, then (s 6= t) ∈ H.

I (Mat) If r(s1, s2) ∈ H and ¬r(t1, t2) ∈ H, then
(s1 6= t1) ∈ H or (s2 6= t2) ∈ H.

I (Mat) If b(s1, s2) ∈ H and ¬b(t1, t2) ∈ H, then
(s1 6= t1) ∈ H or (s2 6= t2) ∈ H.

I (Con) If (s = t) ∈ H and (u 6= v) ∈ H, then
(s 6= u) ∈ H and (t 6= u) ∈ H
or (s 6= v) ∈ H and (t 6= v) ∈ H.



Compatibility and Possible Values

I Terms s and t are compatible if (s 6= t) /∈ H and (t 6= s) /∈ H.

I A discriminant ∆ is a maximal set of compatible
discriminating terms.

I Let D (domain of interpretation) be the set of all
discriminants.

I Possible values: s .∆ means “s has ∆ as possible value.”

I Def: s .∆ if s ∈ ∆ or s is not discriminating.

I Theorem: Every set of compatible terms has a common
possible value.

I Theorem: If s = t ∈ H, then there is one ∆ with s .∆ and
also t .∆.



Possible Values For Terms

I Recall: D is the set of all discriminants.
I Let g : D → D.
I Lift . to unary functions:
I Def: f . g if f (s) . g(∆) whenever s .∆.
I Thm: There is a g such that f . g .
I Interpretation of terms: interpret

I c as ∆c where c .∆c and
I f by g where f . g .

I Induction: θ(s) . [[s]]α if θ(x) . α(x) for all x .
I If (s 6= t) ∈ H, then [[s]] 6= [[t]].
I If (s = t) ∈ H, then [[s]] = [[t]].



Possible Values For Formulas

I Recall: D is the set of all discriminants.
I Let 0 and 1 be possible values for formulas.
I Def:

I ϕ . 0 if ϕ /∈ H.
I ϕ . 1 if ¬ϕ /∈ H.

I Two formulas ϕ and ψ are compatible unless ϕ ∈ H and
¬ψ ∈ H or ¬ϕ ∈ H and ψ ∈ H.

I Let Q : D × D → {0, 1} and q be the relation symbol r or b.
I Def: q . Q if q(s, t) . Q(∆,∆′) whenever s .∆ and t .∆′.
I Interpret r using R such that r . R

and b using B such that b . B .
I Theorem: This is a model of H.



Two Possible Values For Relations

I When choosing Q such that q . Q there are two obvious
choices:

I Minimum: Q(∆,∆′) holds if
q(s, t) ∈ H for some s ∈ ∆ and t ∈ ∆′.

I Maximum: Q(∆,∆′) holds unless
¬q(s, t) ∈ H for some s ∈ ∆ and t ∈ ∆′.

I In the model existence proof above any choice works, but...
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Special Rule for Irreflexivity

I It is possible to avoid some ∀ quantifiers by replacing a
universally quantified formula with a rule.

I Example: ∀x .¬r(x , x).
I Incomplete approach: A is closed if ¬r(s, s) ∈ H.
I Instead consider this (complete) rule:

Irref
r(s, t)

s 6= t

I Corresponding Hintikka condition:
I If r(s, t) ∈ H, then (s 6= t) ∈ H.
I If we choose minimum R with r .R , then ∀x .¬r(x , x) will hold.



Special Rule for Third Clause

I Rule replacing third clause: ∀xy .x = y ∨ r(x , y) ∨ b(x , y)

Cover
¬r(s, t)

s = t|b(s, t)

I Hintikka condition:
I If ¬r(s, t) ∈ H, then s = t ∈ H or b(s, t) ∈ H.
I Choosing max R ensures third clause holds.



Special Rule for Last Clauses

I Rule replacing fourth or fifth clauses, e.g.,
∀x0x1x2.¬b(x0, x1) ∨ ¬b(x0, x2) ∨ ¬b(x1, x2)

NotHom
b(s1, t), b(s2, u)

s1 6= s2|¬b(t, u)

I Hintikka condition:
I If b(s1, t), b(s2, u) ∈ H, then s1 6= s2 ∈ H or ¬b(t, u) ∈ H.
I Choosing min B ensures clause holds.



Results with Special Rules

I Implemented optional use of special rules in Lash.

I Caveat: Restriction to only create rules if they’re easy to apply.

I Result: Lash essentially proves the same 82.

I Some are faster and some are slower.

I E.G.: One that took just over 2 minutes before takes only 16
seconds with one kind of special rule, but not the other.
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Conclusion

I Instantiation-based tableau for first-order with equality

I Implemented in Satallax and its successor Lash

I Since no free variables, an incremental SAT solver can do most
of the search

I Set of problems where it outperforms resolution

I Completeness proof from related higher-order contexts
(Takahashi 1967-1968, Prawitz 1968, Andrews 1971)

I Modifications to Completeness Proof justify lifting some
formulas to rules



Conclusion

I Instantiation-based tableau for first-order with equality

I Implemented in Satallax and its successor Lash

I Since no free variables, an incremental SAT solver can do most
of the search

I Set of problems where it outperforms resolution

I Completeness proof from related higher-order contexts
(Takahashi 1967-1968, Prawitz 1968, Andrews 1971)

I Modifications to Completeness Proof justify lifting some
formulas to rules



Conclusion

I Instantiation-based tableau for first-order with equality

I Implemented in Satallax and its successor Lash

I Since no free variables, an incremental SAT solver can do most
of the search

I Set of problems where it outperforms resolution

I Completeness proof from related higher-order contexts
(Takahashi 1967-1968, Prawitz 1968, Andrews 1971)

I Modifications to Completeness Proof justify lifting some
formulas to rules



Conclusion

I Instantiation-based tableau for first-order with equality

I Implemented in Satallax and its successor Lash

I Since no free variables, an incremental SAT solver can do most
of the search

I Set of problems where it outperforms resolution

I Completeness proof from related higher-order contexts
(Takahashi 1967-1968, Prawitz 1968, Andrews 1971)

I Modifications to Completeness Proof justify lifting some
formulas to rules



Final Slide

Thank you!

Questions?
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