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Chapter 1

Thm 1: 2 has Exactly 2 Elements

1.1 Definitions and Axioms

Let us first make explicit the set of definitions and axioms. We will take primitive names
for the first five ordinals: 0, 1, 2, 3 and 4. Note that 0 will also be our notation for
the empty set. All the axioms below obviously hold in every (reasonable) set theoretic
model. The definition of atleast2 is nonstandard, but can be proven to mean that the
set in question has at least two elements.

Definition 1.1. We define ⊆ to be a binary relation such that X ⊆ Y holds iff (if and
only if) ∀x.x ∈ X ⇒ x ∈ Y .

Definition 1.2. We define disj to be a binary relation such that disj X Y holds iff
X ∩ Y = 0.

Definition 1.3. We define atleast2 to be a unary predicate such that atleast2 X holds
iff ∃Y ∈ X.X 6⊆ ℘ Y .

Definition 1.4. We define atleast3 to be a unary predicate such that atleast3 X holds
iff ∃Y ⊆ X.X 6⊆ Y ∧ atleast2 Y .

Definition 1.5. We define atleast4 to be a unary predicate such that atleast4 X holds
iff ∃Y ⊆ X.X 6⊆ Y ∧ atleast3 Y .

Definition 1.6. We define atleast5 to be a unary predicate such that atleast5 X holds
iff ∃Y ⊆ X.X 6⊆ Y ∧ atleast4 Y .

Definition 1.7. We define atleast6 to be a unary predicate such that atleast6 X holds
iff ∃Y ⊆ X.X 6⊆ Y ∧ atleast5 Y .

Definition 1.8. We define atleast7 to be a unary predicate such that atleast7 X holds
iff ∃Y ⊆ X.X 6⊆ Y ∧ atleast6 Y .

Definition 1.9. We define exactly2 to be a unary predicate such that exactly2 X holds
iff atleast2 X ∧ ¬atleast3 X.
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Definition 1.10. We define exactly3 to be a unary predicate such that exactly3 X holds
iff atleast3 X ∧ ¬atleast4 X.

Definition 1.11. We define exactly4 to be a unary predicate such that exactly4 X holds
iff atleast4 X ∧ ¬atleast5 X.

Definition 1.12. We define exactly5 to be a unary predicate such that exactly5 X holds
iff atleast5 X ∧ ¬atleast6 X.

Definition 1.13. We define exactly6 to be a unary predicate such that exactly6 X holds
iff atleast6 X ∧ ¬atleast7 X.

Axiom 1.1. ∀XY.X ⊆ Y ⇒ Y ⊆ X ⇒ X = Y .

Axiom 1.2. ∀x.x /∈ x.

Axiom 1.3. ∀xy.x ∈ y ⇒ y /∈ x.

Axiom 1.4. ∀x.x /∈ 0.

Axiom 1.5. ∀i.i ∈ 1 ⇔ i = 0.

Axiom 1.6. ∀i.i ∈ 2 ⇔ i = 0 ∨ i = 1.

Axiom 1.7. ∀i.i ∈ 3 ⇔ i = 0 ∨ i = 1 ∨ i = 2.

Axiom 1.8. ∀i.i ∈ 4 ⇔ i = 0 ∨ i = 1 ∨ i = 2 ∨ i = 3.

Axiom 1.9. ∀XY.Y ∈ ℘ X ⇔ Y ⊆ X.

Axiom 1.10. ∀xy.y ∈ {x} ⇔ y = x.

Axiom 1.11. ∀XY z.z ∈ X ∪ Y ⇔ z ∈ X ∨ z ∈ Y .

Axiom 1.12. ∀XY z.z ∈ X ∩ Y ⇔ z ∈ X ∧ z ∈ Y .

Axiom 1.13. ∀XY z.z ∈ X \ Y ⇔ z ∈ X ∧ z /∈ Y .

1.2 Discriminator and Shallow Rules

Discriminator is a first-order automated theorem prover. Unlike most first-order
automated theorem provers, e.g., Prover9 [8], E [10] and Vampire [7], Discriminator

does not use clause normalization, does not use resolution and does not use metavari-
ables. Since there are no metavariables there is no need for unification (or even match-
ing) to instantiate metavariables.

The search procedure Discriminator uses proceeds in three phases, each of which
is affected by a variety of parameters. The three phases are the opening phase, the
search phase and the closing phase. During the opening phase Discriminator may
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(optionally) perform operations such as decomposing logical operators, splitting the
goal into multiple subgoals and expanding away some abbreviations. The opening
phases then passes each subgoal (one at a time) to the main search phase (which we
will simply call the search phase). The search phase performs a complete search (for
first-order logic) based largely on the calculus of Satallax [5, 3, 4], although with no
need for βη-normalization since we are in the first-order case. During search Discrim-

inator processes propositions and instantiations to create ground instances of rules
and information about these instances are passed to the SAT solver MiniSat [6]. The
closing phase is (optionally) activated if a certain number of abstract steps have been
taken in the search. During the closing phase completeness is purposefully abandoned.
The closing phase continues to process the propositions and instantiations generated
during the search, but does not generate all the new propositions and instantiations
required for completeness.

The main new feature of Discriminator (not in Satallax) is the production and
use of shallow rules . For the moment we consider only a special form of shallow rule:
a linear predicate shallow rule. These will be given in the following format:

Γ|ψ ⇒ ϕ1, . . . , ϕn

Here Γ is a list of variables and ψ, ϕ1, . . ., ϕn are formulas that may contain free
variables from Γ. Here ψ is the trigger formula of the rule and will always be one of
the following forms:

• pt1 · · · tm where each ti is either a variable in Γ or of the form fx1 · · · xk where each
xj is a variable in Γ. Every variable in Γ must occur exactly once in pt1 · · · tm.
The predicate p may be equality.

• ¬pt1 · · · tm where each ti is either a variable in Γ or of the form fx1 · · · xk where
each xj is a variable in Γ. Every variable in Γ must occur exactly once in pt1 · · · tm.
The predicate p may be equality.

When we are processing a formula Ψ one can easily determine if the trigger formula
matches the formula and uniquely determine a substitution θ for all the variables in Γ
such that θ(ψ) = Ψ without doing general first-order matching since all the variables
occur (exactly once) in a shallow position of ψ. Using θ we have (potentially) new
(ground) propositions θ(ϕ1), . . ., θ(ϕn). If these propositions are new, they will be
added to the priority queue to be processed later. Additionally a propositional clause
recording the relationship between Ψ and θ(ϕ1), . . ., θ(ϕn) is created and given to
MiniSat.

Shallow rules can be seen as analogous to the rules for if-then-else and choice de-
veloped for Satallax [2]. In those cases the rules were sufficient to obtain completeness
with no extra axioms for if-then-else or choice. In the case of Discriminator we
generate shallow rules from propositions without reason to believe the shallow rule can
completely replace the source proposition during the search. However, as a heuristic
we typically assign propositions low priority if they produce at least one shallow rule.
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The set theory axioms from the previous section produce many linear predicate
shallow rules. We record these here.

Axiom 1.1 produces the following rules:

x, y|x 6= y ⇒ x 6⊆ y, y 6⊆ x (1.1)

x, y|x ⊆ y ⇒ x = y, y 6⊆ x (1.2)

x, y|y ⊆ x⇒ x = y, x 6⊆ y (1.3)

Axiom 1.2 produces the following rule:

x, y|x ∈ y → y 6= x (1.4)

The reader may have expected the rule to appear as x|x ∈ x → ·. However, the x
occurs twice in x ∈ x, so this would not be a linear shallow predicate rule.

Axiom 1.3 produces the following rule:

x, y|x ∈ y ⇒ y /∈ x (1.5)

Axiom 1.4 produces the following rule:

x|x ∈ 0 ⇒ · (1.6)

Axiom 1.5 produces the following rules:

x|x ∈ 1 ⇒ x = 0 (1.7)

x|x = 0 ⇒ x ∈ 1 (1.8)

x|x /∈ 1 ⇒ x 6= 0 (1.9)

x|x 6= 0 ⇒ x /∈ 1 (1.10)

Axiom 1.6 produces the following rules:

x|x ∈ 2 ⇒ x = 0 ∨ x = 1 (1.11)

x|x = 1 ⇒ x ∈ 2 (1.12)

x|x = 0 ⇒ x ∈ 2 (1.13)

x|x /∈ 2 ⇒ ¬(x = 0 ∨ x = 1) (1.14)

x|x 6= 1 ⇒ x = 0, x /∈ 2 (1.15)

x|x 6= 0 ⇒ x = 1, x /∈ 2 (1.16)

There are 8 similar rules produced from Axiom 1.7 and 10 rules produced from
Axiom 1.8. We show 2 of the 8 rules produced from Axiom 1.7.

x|x ∈ 3 ⇒ x = 0 ∨ x = 1 ∨ x = 2 (1.17)
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x|x 6= 1 ⇒ x = 0, x = 2, x /∈ 3 (1.18)

We show 2 of the 10 rules produced from Axiom 1.8.

x|x ∈ 4 ⇒ x = 0 ∨ x = 1 ∨ x = 2 ∨ x = 3 (1.19)

x|x = 2 ⇒ x ∈ 4 (1.20)

Axiom 1.9 generates four shallow rules:

x, y|y ∈ ℘x⇒ y ⊆ x (1.21)

x, y|y /∈ ℘x⇒ y 6⊆ x (1.22)

x, y|y ⊆ x⇒ y ∈ ℘x (1.23)

x, y|y 6⊆ x⇒ y 6∈ ℘x (1.24)

Axiom 1.10 produces the following rules:

x, y|y ∈ {x} ⇒ y = x (1.25)

x, y|y = x⇒ y ∈ {x} (1.26)

x, y|y /∈ {x} ⇒ y 6= x (1.27)

x, y|y /∈ {x} ⇒ x 6= y (1.28)

x, y|y 6= x⇒ y /∈ {x} (1.29)

Axiom 1.11 produces the following rules:

x, y, z|z ∈ x ∪ y ⇒ z ∈ x ∨ z ∈ y (1.30)

x, y, z|z /∈ x ∪ y ⇒ ¬(z ∈ x ∨ z ∈ y) (1.31)

Axiom 1.12 produces the following rules:

x, y, z|z ∈ x ∩ y ⇒ z ∈ x ∧ z ∈ y (1.32)

x, y, z|z /∈ x ∩ y ⇒ ¬(z ∈ x ∧ z ∈ y) (1.33)

Axiom 1.13 produces the following rules:

x, y, z|z ∈ x \ y ⇒ z ∈ x ∧ z /∈ y (1.34)

x, y, z|z /∈ x \ y ⇒ ¬(z ∈ x ∧ z /∈ y) (1.35)
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1.3 Theorem 1

Theorem 1.1. exactly2 2.

Let us first give a quick informal proof to give an idea what an automated theorem
prover would need to do to prove this theorem from the axioms.

Proof. We need to prove two things: atleast2 2 and ¬atleast3 2. We first prove atleast2 2.
By Definition 1.3 we need to give some Y ∈ 2 such that 2 6⊆ ℘Y . We take Y to be 0.
We easily have 0 ∈ 2 from Axiom 1.6. It remains to prove 2 6⊆ ℘0. Assume 2 ⊆ ℘0.
We have 1 ∈ 2 from Axiom 1.6 and so we must have 1 ∈ ℘0 (using Definition 1.1). By
Axiom 1.9 we have 1 ⊆ 0. We know 0 ∈ 1 by Axiom 1.5 and so 0 ∈ 0. The conclusion
0 ∈ 0 contradicts both Axiom 1.2 and Axiom 1.4, providing two ways to complete this
subproof.

Next we prove ¬atleast3 2. By Definition 1.10 there must be some Y ⊆ 2 such that
2 6⊆ Y and atleast2 Y . By Definition 1.1 there must be some a ∈ 2 with a /∈ Y . By
Definition 1.9 there must be some b ∈ Y with Y 6⊆ ℘b. By Definition 1.1 there must
be some c ∈ Y with c /∈ ℘b. Since a /∈ Y , b ∈ Y and c ∈ Y , we know a 6= b and a 6= c.
Using c /∈ ℘b we can also argue b 6= c (using Axioms 1.9 and 1.1). Since Y ⊆ 2, we
know b ∈ 2 and c ∈ 2. Applying Axiom 1.6 with each of a, b and c we have eight cases,
each of which is in contradiction with a 6= b, a 6= c and b 6= c.

Let us now informally describe how Discriminator searches for and finds a proof
of the theorem. Discriminator uses the opening to recognize that certain predicates
can be considered abbreviations, including ⊆, exactly2, atleast2 and atleast3. These are
expanded during the opening and the subgoal is split into two subgoals, corresponding
to proving atleast2 2 and ¬atleast3 2. We describe the search for these two subgoals
separately below.

1.3.1 Search for Subgoal 1

The first subgoal asserts the axioms above (with definitional axioms removed and with
abbreviations expanded in the remaining axioms) and the additional proposition:

¬∃Y ∈ 2.2ˆ6⊆℘Y

where we write s⊆̂t as notation for ∀z.z ∈ s→ z ∈ t and sˆ6⊆t for the negation. (Recall
that the predicate ⊆ has been expanded away already.) These asserted propositions
are analyzed to see which produce shallow rules. In this case every asserted proposition
produces at least one shallow rule. We saw shallow rules for the axioms in Section 1.2
and these remain mostly the same. The exceptions are caused by the expansion of ⊆
in Axioms 1.1 and 1.9. Due to this expansion the modified Axiom 1.1 yields only the
shallow rule

x, y|x 6= y ⇒ xˆ6⊆y, y ˆ6⊆x (1.36)
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and the modified Axiom 1.9 yields only the shallow rules

x, y|y ∈ ℘x⇒ y⊆̂x (1.37)

x, y|y 6∈ ℘x⇒ y ˆ6⊆x (1.38)

A legend assigning numbers to the propositions considered during the search is given
in Table 1.1. A figure showing the steps leading to the proof is given in Figure 1.1. For
each asserted formula a unit clause is sent to MiniSat. For example, 14 represents the
proposition

∃Y ∈ 2.2ˆ6⊆℘Y

and the unit clause -14 (representing the negation of the conclusion) is sent to MiniSat.

For i ∈ {1, . . . , 13}, i represents one of the axioms (with ⊆ expanded) and the unit

clause i is sent to MiniSat. The ones that play a role are 5 , 7 , 8 , 11 , 12 and 13
(see Table 1.1).

The negated conclusion
¬∃Y ∈ 2.2ˆ6⊆℘Y

yields two shallow rules:
x|x ∈ 2 ⇒ 2⊆̂℘x (1.39)

x, y|x /∈ ℘y ⇒ x /∈ 2, y /∈ 2 (1.40)

Due to Shallow Rule 1.40, whenever we process a proposition of the form s /∈ ℘t we
will generate the propositions s /∈ 2 and t /∈ 2 along with the propositional information
relating these three propositions.

The story of how Discriminator proceeds to search for this subgoal is somewhat
roundabout.1

When a proposition produces at least one shallow rule we often (heuristically) give a
lower priority to processing the source proposition. In this case since all the propositions
produce shallow rules, all the initial propositions have a low priority. For this reason
the search will begin by processing instantiations.

The complete calculus for Discriminator only requires instantiating with terms
that occur on the left or right hand side of a disequation (discriminating terms) or with
a default term if no term is discriminating. In this case there are no disequations (yet)
so no term is discriminating. One option in Discriminator is to seed the initial set of
instantiations with all (ground) subterms of the problem. The only ground subterms of
the propositions asserted in this subgoal are 0, 1, 2, 3 and 4. There are no discriminating
terms in the subgoal, so these are the only instantiations in the beginning.

Processing an instantiation before processing any positive universally quantified
propositions or negative existentially quantified propositions only has a bookkeeping
effects. The search begins by processing these five instantiations and then looking for
one of the (low priority) propositions to process. Steps 0 (processing instantiation 2), 2
(processing instantation 1) and 3 (processing instantiation 0) are the first steps shown in

1This is a polite way to refer to what appears to be a drunkard’s walk.
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Step Rule Type Generated
Props and Rules

Generated

Clauses0: 2

2: 1

3: 0

5: 5 17

6: 17 20

14: 20 33

18: 33 41

22: 41 51

23: 51 Shallow Rule 1.13 54

24: 54 Shallow Rule 1.39 58 -54 | 58 | 14

25: 58 60 63

Shallow Rule 1.42

26: 60 -6665

28: 63 69

29: 69 Shallow Rule 1.37 74

30: 74 76

77

32: 77 -54

33: 76 81

34: -54 Mating -50

Shallow Rule 1.14 -41

54 | -41 | -7

35: -50 50

36: -41 -51

41 | -50

37: -51 Confrontation -85 -86

38: -86 86

40: -85 Shallow Rule 1.36 85 | -89 | -90 | -12

Shallow Rule 1.18 87

44: 87 Shallow Rule 1.20 97

45: 97 Shallow Rule 1.19 103

46: 103 104

47: 104 105

48: 105 85

49: 85 Confrontation 51 | -85 | -50 | -86

Shallow Rule 1.12 66

50: 66 Shallow Rule 1.42 -66 | 65 | -58

Shallow Rule 1.39 108 -66 | 108 | 14

51: 108 113

Shallow Rule 1.43

Shallow Rule 1.43 115 -54 | 115 | -108

53: 113 116

54: 116 Shallow Rule 1.37 121

55: 121 Shallow Rule 1.44

128

78: 128 Shallow Rule 1.5 -81

82: 115 Shallow Rule 1.37 -115 | 89 | -13

96: 81 Shallow Rule 1.4 -81 | -51 | -11

100: -81 Shallow Rule 1.9 81 | -86 | -8

107: 65 Shallow Rule 1.37 -65 | 90 | -13

162: -66 Shallow Rule 1.14 -105 66 | -105 | -7

163: -105 105 | -86

Figure 1.1: Search Steps Leading to Proof of Subgoal 1
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5 ∀x.x ∈ 4 ↔ x = 0 ∨ x = 1 ∨ x = 2 ∨ x = 3 7 ∀i.i ∈ 2 ⇔ i = 0 ∨ i = 1

8 ∀i.i ∈ 1 ⇔ i = 0 11 ∀x.x /∈ x

12 ∀XY.X⊆̂Y ⇒ Y ⊆̂X ⇒ X = Y 13 ∀XY.Y ∈ ℘ X ⇔ Y ⊆̂X

14 ∃Y ∈ 2.2ˆ6⊆℘Y 17 (1 ∈ 4 ↔ 1 = 0 ∨ 1 = 1 ∨ 1 = 2 ∨ 1 = 3)

20 1 = 0 ∨ 1 = 1 ∨ 1 = 2 ∨ 1 = 3 33 1 = 0 ∨ 1 = 1 ∨ 1 = 2

41 1 = 0 ∨ 1 = 1 50 1 = 1

51 1 = 0 54 1 ∈ 2

58 2⊆̂℘1 60 0 ∈ 2 → 0 ∈ ℘1

63 2 ∈ 2 → 2 ∈ ℘1 65 0 ∈ ℘1

66 0 ∈ 2 69 2 ∈ ℘1

74 2⊆̂1 76 0 ∈ 2 → 0 ∈ 1

77 1 ∈ 2 → 1 ∈ 1 81 0 ∈ 1

85 0 = 1 86 0 = 0

87 0 = 2 89 1⊆̂0

90 0⊆̂1 97 0 ∈ 4

103 0 = 0 ∨ 0 = 1 ∨ 0 = 2 ∨ 0 = 3 104 0 = 0 ∨ 0 = 1 ∨ 0 = 2

105 0 = 0 ∨ 0 = 1 108 2⊆̂℘0

113 2 ∈ 2 → 2 ∈ ℘0 115 1 ∈ ℘0

116 2 ∈ ℘0 121 2⊆̂0

128 1 ∈ 0

Table 1.1: Propositions in Subgoal 1 Search

Figure 1.1. No rules apply and no propositions, instantiations or clauses are generated.
The side effect (not shown in Figure 1.1) is that these instantiations are now available
when future propositions are processed.

The first proposition processed is Axiom 1.8 ( 5 in Table 1.1 and Figure 1.1). This
is instantiated with each of 0, 1, 2, 3 and 4. The instance that will play a role in the
successful proof is the one given by 1:

17 : 1 ∈ 4 ↔ 1 = 0 ∨ 1 = 1 ∨ 1 = 2 ∨ 1 = 3.

This may seem surprising since this seems to have nothing directly to do with proving 2
has at least 2 elements. However, processing the proposition and subsequent subformu-
las leads to processing the propositions 1 = 0 and 1 = 1. Since the proposition above is
an equivalence, 1 = 0 and 1 = 1 occur both positively and negatively as subformulas.
When processing 1 = 0 (a positive proposition), the proposition 1 ∈ 2 is generated due
to Shallow Rule 1.13. This illustrates the somewhat unexpected way propositions are
sometimes generated. If 1 were equal to 0, then 1 would be in 2 so we consider 1 ∈ 2.
Of course, 1 ∈ 2 is both true and a reasonable proposition to consider, even though it
was generated by considering the false proposition 1 = 0. The reader should keep in
mind that “processing” a proposition has nothing to do with whether the proposition
is true or false, but only to do with determining its relationship to other propositions.

When processing 1 ∈ 2, Shallow Rule 1.39 leads Discriminator to generate 2⊆̂℘1.
Again, this is a somewhat unexpected way to obtain 2⊆̂℘1 since it is true, but Dis-

criminator is using the negation of atleast2 2 to obtain it. In Table 1.1 and Figure 1.1,
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1 ∈ 2 is 54 and 2⊆̂℘1 is 58 . Shallow Rule 1.39 also yields the propositional clause

-54 | 58 | 14 to send to MiniSat. (This is the first clause generated during the search
that will play a role in the unsatisfiability of the clauses sent to MiniSat.) Recall that
-14 is a unit clause from the initialization of the search.

Recall that 2⊆̂℘1 is notation for ∀z.z ∈ 2 → z ∈ ℘1. When Discriminator

processes this universally quantified formula it generates the new shallow rules

y, z|z /∈ ℘y ⇒ y 6= 1, z /∈ 2 (1.41)

and

z|z ∈ 2 ⇒ z ∈ ℘1 (1.42)

Only this second rule will play a role in the eventual proof. Discriminator also
instantiates the formula with all the five instantations 0, 1, 2, 3 and 4. Two instances
play a role in the proof. The instance with 0 (i.e., 0 ∈ 2 → 0 ∈ ℘1, abbreviated as 60 )
plays a direct role in the proof. The instance with 2 (i.e., 2 ∈ 2 → 2 ∈ ℘1, abbreviated
as 63 ) plays an indirect, but still important, role during the search. Processing the
instance with 0 (in Step 26) generates propositions 0 /∈ 2 and 0 ∈ ℘1, and both will
participate in the proof. Processing the instance with 2 generates propositions 2 /∈ 2
and 2 ∈ ℘1, but only 2 ∈ ℘1 will participate in the proof.

Step 29 in Figure 1.1 corresponds to processing 2 ∈ ℘1. Shallow Rule 1.37 generates
the proposition 2⊆̂1. Processing (in Step 30) this yields 0 ∈ 2 → 0 ∈ 1 ( 76 ) and

1 ∈ 2 → 1 ∈ 1 ( 77 ) leading Discriminator to generate propositions 0 ∈ 1 and
1 /∈ 2. (Recall above Discriminator had already processed the positive proposition
1 ∈ 2, see Step 24 in Figure 1.1.) Discriminator processes 1 /∈ 2 in Step 34, delaying
processing 0 ∈ 1 until Step 96.

Two important actions happen when processing 1 /∈ 2. Since 1 ∈ 2 was processed
before, it is mated with 1 /∈ 22 producing disequations 1 6= 1 and 2 6= 2. In addition
Shallow Rule 1.14 gives that if 1 /∈ 2, then ¬(1 = 0∨ 1 = 1). This results in generating
the proposition ¬(1 = 0 ∨ 1 = 1) ( -41 ) and the clause 54 | -41 | -7 sent to MiniSat.

Since 7 is a unit clause from the initialization, we must have either 1 ∈ 2 or ¬(1 =
0 ∨ 1 = 1).

Processing 1 6= 1 yields the unit clause 50 representing the fact that 1 = 1 (by
an equality rule of the calculus). Processing ¬(1 = 0 ∨ 1 = 1) yields an obvious
relationship with 1 = 1 represented by the clause 41 | -50 . Essentially at this point we
know 1 = 0 ∨ 1 = 1 holds, and so 1 ∈ 2 holds. Using the information represented by
the clause -54 | 58 | 14 we can further infer that 2⊆̂℘1 must hold.

2This is weird. It’s almost certainly unnecessary to mate a proposition with its literal complement.
In this case it happens to help. Since writing this description I changed the code to prevent mating
formulas with their signed counterpart and prevent confrontations with their signed counterparts, with
parameters to allow such “self matings” and “self confrontations.” The proof described here depends
on allowing self matings and self confrontations, but since changing the code alternative proofs have
(allegedly) been found that do not require self matings or self confrontations. I need to look into these
more closely to make sure there is nothing suspicious about the new proofs.
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When the proposition ¬(1 = 0 ∨ 1 = 1) was processed, the proposition 1 6= 0 was
generated. In Step 37, 1 6= 0 is processed. Recall that the positive proposition 1 = 0
was processed above. When 1 6= 0 is processed the disequation 1 = 0 is confronted
by the equation 1 = 03 yielding as a side effect the disequations 0 6= 1 and 0 6= 0.
Processing 0 6= 0 (in Step 38) produces the unit clause 86 form MiniSat, representing
the truth of 0 = 0.

When 0 6= 1 is processed (in Step 40) two relevant independent actions occur.
Shallow Rule 1.36 yields the clause 85 | -89 | -90 | -12 recording that if 0 6= 1, then

either 0 ˆ6⊆1 or 1 ˆ6⊆1. Shallow Rule 1.18 generates the proposition 0 = 2. When 0 = 2 is
processed Shallow Rule 1.20 generates the proposition 0 ∈ 4. When 0 ∈ 4 is processed
the proposition 0 = 0 ∨ 0 = 1 ∨ 0 = 2 ∨ 0 = 3 is generated. By processing it and its
subformulas eventually 0 = 1 is processed.

Two important actions occur when 0 = 1 is processed in Step 49. First 0 = 1
confronts 1 6= 0 (processed earlier) to record the propositional information that both
cannot be true. This is represented by the clause 51 | -85 | -50 | -86 . Second Shallow
Rule 1.12 is triggered and generates the propositional formula 0 ∈ 2.

When 0 ∈ 2 is processed in Step 50 two shallow rules apply. Shallow Rule 1.42
produces the clause -66 | 65 | -58 , essentially representing that if 0 ∈ 2, then 0 ∈ ℘1.

Shallow Rule 1.39 produces the new proposition 2⊆̂℘0 and the clause -66 | 108 | 14 .

Since -14 is a unit clause from the initialization, this clause means that if 0 ∈ 2, then
2⊆̂℘0.

Processing 2⊆̂℘0 in Step 51 yields the proposition 2 ∈ 2 → 2 ∈ ℘0 ( 113 ) by
instantiating with 2. In addition the following new shallow rule is created:

x|x ∈ 2 ⇒ x ∈ ℘0 (1.43)

After creating this new shallow rule Discriminator checks if it is triggered by any
previously processed propositions. In fact 1 ∈ 2 (processed in Step 24) triggers the rule
leading to the new proposition 1 ∈ ℘0 ( 115 ) and the clause -54 | 115 | -108 .

Processing 2 ∈ 2 → 2 ∈ ℘0 leads to processing 2 ∈ ℘0. Shallow Rule 1.37 generates
2⊆̂0. Processing 2⊆̂0 creates the following new shallow rule:

x|x ∈ 2 ⇒ x ∈ 0 (1.44)

This new shallow rule is triggered by 1 ∈ 2 generating the proposition 1 ∈ 0. Processing
1 ∈ 0 (in Step 78) generates the proposition 0 /∈ 1 by Shallow Rule 1.5.

In Step 82 1 ∈ ℘0 is processed. Shallow rule 1.37 yields clause -115 | 89 | -13

representing that if 1 ∈ ℘0, then 1⊆̂0 (since 13 is a unit clause from the initial
assumptions).

In Step 96 0 ∈ 1 (generated in Step 33) is finally processed. Shallow Rule 1.4 yields
the clause -81 | -51 | -11 meaning that if 0 ∈ 1, then 1 6= 0.

3Confrontation is essentially the Mating rule for equality, making use of symmetry of equality.
See [2].
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In Step 100 0 /∈ 1 (generated in Step 78) is processed. Shallow Rule 1.9 yields the
clause 81 | -86 | -8 essentially giving that if 0 /∈ 1, then 0 6= 0. Since we already know
0 = 0 from Step 38, we now know 0 ∈ 1. Combining this with the information from
Step 96, we know 1 6= 0.

In Step 107 0 ∈ ℘1 (generated in Step 26) is processed. Shallow Rule 1.37 yields
the clause -65 | 90 | -13 , representing that if 0 ∈ ℘1, then 0⊆̂1.

Discriminator was called with a middle abstract time limit of 128. As a con-
sequence Discriminator continues searching as usual by processing propositions for
20 more steps. After these steps Discriminator enters the closing phase. This is
represented by the dashed line in Figure 1.1. In the closing phase, Discriminator

continues to process propositions (and instantiations, if there are any) on the priority
queue but no longer generates all new propositions and adds them to the priority queue
for later processing. (This is, of course, very incomplete.) Depending on parameter
settings Discriminator might not add any new propositions to the priority queue.
For this search a parameter is set so that Discriminator will add a new proposition
to the priority queue only if it is an implication, a conjunction, a disjunction or an
equivalence (or the negation of one of these).

During the closing phase only two steps will be required to complete the proof. In
Step 162 the formula 0 /∈ 2 (generated in Step 26) is processed. Shallow Rule 1.14
yields the proposition ¬(0 = 0∨ 0 = 1) and the clause 66 | -105 | -7 , representing that
if 0 /∈ 2, then ¬(0 = 0∨ 0 = 1). Since ¬(0 = 0∨ 0 = 1) is the negation of a disjunction,
it is added to the priority queue.

In the final step, Step 163, ¬(0 = 0 ∨ 0 = 1) is processed. The clause 105 | -86
is sent to MiniSat and MiniSat reports unsatisfiability, completing the proof of the
subgoal.

Before ending the discussion of this subgoal, let us reconsider the argument by using
the MiniSat clauses to indicate how a refutation is reached. In the beginning there are
14 unit clauses: -14 and i for i ∈ {1, . . . , 13}. Two more unit clauses are produced
during the search: 50 (for 1 = 1) and 86 (for 0 = 0). These unit clauses can be
propagated (leading directly to unsatisfiability) as follows. The clause 41 | -50 gives

the unit 41 (for 1 = 0 ∨ 1 = 1). The clause 54 | -41 | -7 gives 54 (for 1 ∈ 2). The

clause -54 | 58 | 14 gives 58 (for 2⊆̂℘1).

The clause 81 | -86 | -8 gives the unit 81 (for 0 ∈ 1) and the clause 105 | -86

gives the unit 105 (for 0 = 0 ∨ 0 = 1). Now 66 | -105 | -7 gives the unit 66 (for

0 ∈ 2). Now -66 | 65 | -58 gives the unit 65 (for 0 ∈ ℘1) and -66 | 108 | 14 gives

the unit 108 (for 2⊆̂℘0). Note that 2⊆̂℘0 is actually false, but it is implied by the

negation of the conclusion we with to prove (represented by -14 ).

At this point -54 | 115 | -108 gives the unit 115 (for 1 ∈ ℘0). Now -115 | 89 | -13

gives the unit 89 (for 1⊆̂0). Additionally -65 | 90 | -13 gives the unit 90 (for 0⊆̂1).

These last two units combine with 85 | -89 | -90 | -12 to give 85 (for 0 = 1). Now

51 | -85 | -50 | -86 gives 51 (for 1 = 0).

We are now in conflict with the clause -81 | -51 | -11 . That is, we have derived
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0 ∈ 1 and 1 = 0 above, but also derived that both of these cannot be true.

1.3.2 Search for Subgoal 2

When considering the second subgoal the opening phase can break the problem down
further after expanding atleast3, atleast2 and ⊆. As a consequence the opening creates
four fresh eigenvariables Y , a, b and c. In addition to the axioms (with abbreviations
expanded), the search includes the following propositions:

1. Y ⊆̂2

2. a ∈ 2,

3. b ∈ Y ,

4. c ∈ Y ,

5. c /∈ ℘b and

6. a /∈ Y .

The proposition Y ⊆̂2 produces the following shallow rule:

x|x ∈ Y ⇒ x ∈ 2 (1.45)

The other propositions above do not produce a shallow rule and so they are given
priority when the search begins. Other shallow rules that are produced from the axioms
(with ⊆ expanded) and are used in the search are Shallow Rule 1.11 and 1.37. The
important propositions used in the search are given in Table 1.2 and the steps leading
to a proof are shown in Figure 1.2. MiniSat is initially given unit clauses corresponding
to the axioms and assumptions of the subgoal. These unit clauses are 17 positive unit
clauses i for i ∈ {1, . . . , 17} and the two negative unit clauses -18 and -19 .

In Step 1 c ∈ Y is processed. Shallow Rule 1.45 generates the formula c ∈ 2 and a
clause that essentially tells us that c ∈ 2 is true. In Step 2 c ∈ 2 is processed. Shallow
Rule 1.11 generates the formula c = 0 ∨ c = 1 and a clause that essentially tells us
c = 0 ∨ c = 1 is true. In Step 5 c = 0 ∨ c = 1 is processed. The disjunction rule gives
us the formulas c = 0 and c = 1 and a propositional clause telling us one of these must
be true. Although the formulas c = 0 and c = 1 are generated, we do not list them as
generated in Figure 1.2 since they will not need to be processed in order to obtain a
proof. (They are both processed during the search, but this does not contribute to the
ultimate success.)

In Step 6 c /∈ ℘b is processed. Shallow Rule 1.37 gives the formula cˆ6⊆b and a clause
that essentially means cˆ6⊆b is true. We return to process in cˆ6⊆b at Step 27.

In Step 11 a /∈ Y is processed and is mated with c ∈ Y . This generates two
disequations c 6= a and Y 6= Y , as well as a clause essentially indicating that either
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Step Rule Type Generated
Props

Generated

Clauses

1: 15 Shallow Rule 1.45 22 -15 | 22 | -12

2: 22 Shallow Rule 1.11 25 -22 | 25 | -7

5: 25 -25 | 33 | 32

6: -18 Shallow Rule 1.36 -37 18 | -37 | -17

11: -19 Mating -45 -47 -15 | 19 | -47 | -45

12: -47 47

27: -37 -95 37 | -95

28: -95 96 -97 95 | 96

95 | -97

29: 96 Mating -101

33: -101

39: 14 Mating -133 -14 | 19 | -47 | -133

Shallow Rule 1.45 139 -14 | 139 | -12

40: -133

45: 139 Shallow Rule 1.11 165 -139 | 165 | -7

46: 165 142 146 -165 | 142 | 146

47: 142 Confrontation -167 133 | -142 | -167 | -141

Confrontation -168

48: -167 167

58: 146 Confrontation 133 | -146 | -167 | -145

60: 13 Mating -194

Shallow Rule 1.11 199 -13 | 199 | -7

61: -194 194

62: 199 141 145 -199 | 141 | 145

63: 145

71: 141

75: -97 Mating -226 -96 | 97 | -168 | -226

78: -226 226

164: -45 Confrontation 45 | -141 | -33 | -194

45 | -145 | -32 | -194

176: -168 Confrontation 168 | -146 | -32 | -167

168 | -142 | -33 | -167

Figure 1.2: Search Steps Leading to Proof of Subgoal 2
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7 ∀i.i ∈ 2 ⇔ i = 0 ∨ i = 1 12 Y ⊆̂2

13 a ∈ 2 14 b ∈ Y

15 c ∈ Y 17 ∀XY.Y ∈ ℘ X ⇔ Y ⊆̂X

18 c ∈ ℘b 19 a ∈ Y

22 c ∈ 2 25 c = 0 ∨ c = 1

32 c = 1 33 c = 0

37 c⊆̂b 45 c = a

47 Y = Y 77 1 = 1

95 d ∈ c → d ∈ b 96 d ∈ c

97 d ∈ b 101 d = c

133 b = a 139 b ∈ 2

141 a = 0 142 b = 0

145 a = 1 146 b = 1

165 b = 0 ∨ b = 1 167 b = b

168 c = b 194 a = a

199 a = 0 ∨ a = 1 226 d = d

Table 1.2: Propositions in Subgoal 2 Search

c 6= a or Y 6= Y must be true. In Step 12 Y 6= Y is processed resulting in a unit clause
corresponding to the truth of Y = Y . Hence we now know c 6= a.

In Step 27 cˆ6⊆b is processed. Recall that this proposition is actually

¬(∀x.x ∈ c→ x ∈ b).

When Discriminator processes an existentially quantified proposition or a negated
universally quantified proposition, it creates a fresh eigenvariable as a witness. Let us
call this fresh eigenvariable d. The new proposition ¬(d ∈ c → d ∈ b) is generated as
well as a clause that essentially says d ∈ c → d ∈ b is false. Note that this is different
to the way such quantifiers are treated by most first-order automated theorem provers.
Most first-order automated theorem provers eliminate these quantifiers using Skolem
functions in a preprocessing step. The treatment of such quantifiers by Discrimina-

tor is even different from other automated theorem provers that do not (always) use
Skolem functions. For example Tps [1] (optionally) uses selected variables and, in or-
der to maintain soundness, ensures acyclicity of an ordering relating selected variables
and existential variables (see [9] for more information). Discriminator does not use
existential variables and so there is no need to maintain such an ordering.

In Step 28 ¬(d ∈ c → d ∈ b) is processed generating the propositions d ∈ c and
d /∈ b along with clauses recording that d ∈ c is true and d /∈ b is true. In Step 29 d ∈ c
is processed and mated with c ∈ ℘b generating the disequation d 6= c. In Step 33 d 6= c
is processed making it available for future confrontations.

In Step 39 b ∈ Y is processed resulting in two important actions. First b ∈ Y is
mated with a /∈ Y resulting in the disequation b 6= a and a clause that allows us to
conclude that b 6= a is true. Second the Shallow Rule 1.45 gives us the proposition b ∈ 2
and a clause allowing us to conclude b ∈ 2 is true. In Step 40 b 6= a is processed, but
this only has the bookkeeping effect of making b 6= a available for future confrontations
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with positive equations. In Step 45 b ∈ 2 is processed and Shallow Rule 1.11 generates
the disjunction b = 0 ∨ b = 1 and a clause allowing us to conclude this disjunction is
true. In Step 46 the disjunction is processed giving us equations b = 0 and b = 1 and
a clause meaning one of these equations must be true.

In Step 47 the equation b = 0 is processed and confronts two previously processed
disequations: b 6= a and d 6= c. The confrontation with b 6= a produces the disequation
b 6= b and a clause telling us that if b = 0 is true, then a = 0 is false or b = b is false. The
confrontation with d 6= c produces the disequation c 6= b which will be processed in the
final step of the proof. In Step 48 b 6= b is processed giving a unit clause corresponding
to the truth of b = b. Now we know that if b = 0 is true, then a = 0 is false.

In Step 58 the equation b = 1 is processed and confronts b 6= a. This generates a
clause that essentially says that if b = 1, then a 6= 1.

In Step 60 a ∈ 2 is processed giving two relevant results. Mating with a /∈ Y
(processed in Step 11) generates the new disequation a 6= a. Shallow Rule 1.11 generates
the disjunction a = 0 ∨ a = 1 and a clause saying the disjunction is true. Step 61
processes a 6= a producing the unit clause saying a = a is true. Step 62 processes
a = 0 ∨ a = 1 producing the propositions a = 0 and a = 1 and producing a clause
saying one of these propositions must be true. Steps 63 and 71 processes these two
equations making them available for later confrontations.

Step 75 processes d /∈ b (from Step 28). Mating d /∈ b with d ∈ c produces the
disequation d 6= d and a clause saying that either c 6= b or d 6= d must be true. Step
78 processes d 6= d giving the unit clause saying d = d is true. At this point we know
c 6= b must be true.

Discriminator continues searching as above until 128 steps have been reached.
As with the first subgoal at Step 128 the closing phase begins. After this point the
only new propositions that will be added to the priority queue for future processing are
implications, conjunctions, disjunctions or equivalences (or negations of one of these).
During the closing phase two relevant steps will complete the proof.

Before describing these final two steps, let us summarize what we know so far. After
Step 5 we know either c = 0 or c = 1. After Step 46 we know either b = 0 or b = 1.
After Step 48 we know if b = 0, then a 6= 0. After Step 58 we know if b = 1, then a 6= 1.
After Step 62 we know either a = 0 or a = 1. The only remaining possibilities to be
ruled are when c has the same value as either a or b. We know c 6= a from Step 12 and
c 6= b from Step 78, but the propositional clauses so far are still satisfiable.

In Step 164 c 6= a is processed and is confronted by a = 0 and a = 1. The
confrontation with a = 0 yields a clause meaning that if c = 0, then a 6= 0. The
confrontation with a = 1 yields a clause meaning that if c = 1, then a 6= 1.

In the final step, Step 176, c 6= b is processed and is confronted by b = 0 and b = 1.
The confrontation with b = 0 yields a clause meaning that if c = 0, then b 6= 0. The
confrontation with b = 1 yields a clause meaning that if c = 1, then b 6= 1. The set of
propositional clauses is now unsatisfiable, completing the proof.
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