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Mizar and Egal

◮ Mizar 1973-now

◮ First-Order Tarski-Grothendieck

◮ Scheme for Replacement

◮ Universes via Tarski’s Axiom A

◮ Big Library (MML) > 60K theorems

◮ Egal 2014-now

◮ Higher-Order Tarski-Grothendieck

◮ Replacement as a single HO formula

◮ Universes via a Grothendieck universe operator

◮ Small Library < 1000 theorems

◮ Goal: Compare the two set theories.
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Tarski’s Axiom A

◮ Tarski 1938. Über Unerreichbare Kardinalzahlen.

◮ Axiom A: every set N is a member of some Tarski
universe M.

◮ For M to be a Tarski universe it must satisfy:
1. X ∈ M and Y ⊆ X imply Y ∈ M

2. X ∈ M implies ℘X ∈ M (sort of)
3. X ⊆ M implies X and M are equipotent or X ∈ M
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Tarski’s Axiom A

◮ Tarski 1938. Über Unerreichbare Kardinalzahlen.

◮ Axiom A: every set N is a member of some Tarski
universe M.

◮ For M to be a Tarski universe it must satisfy:
1. X ∈ M and Y ⊆ X imply Y ∈ M

2. X ∈ M implies ℘X ∈ M (sort of)
3. X ⊆ M implies X and M are equipotent or X ∈ M

◮ Equipotence of X and M is defined via existence of a set
of Kuratowski pairs that is, essentially, a bijection from
X to M.
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Tarski’s Axiom A

◮ Tarski 1938. Über Unerreichbare Kardinalzahlen.

◮ Axiom A: every set N is a member of some Tarski
universe M.

◮ For M to be a Tarski universe it must satisfy:
1. X ∈ M and Y ⊆ X imply Y ∈ M

2. X ∈ M implies ℘X ∈ M (sort of)
3. X ⊆ M implies X and M are equipotent or X ∈ M

◮ Equipotence of X and M is defined via existence of a set
of Kuratowski pairs that is, essentially, a bijection from
X to M.

◮ X ⊆ M and X /∈ M implies X “is as big as” M.
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Tarski’s Axiom A

◮ Tarski 1938. Über Unerreichbare Kardinalzahlen.

◮ Axiom A: every set N is a member of some Tarski
universe M.

◮ For M to be a Tarski universe it must satisfy:
1. X ∈ M and Y ⊆ X imply Y ∈ M

2. X ∈ M implies ℘X ∈ M (sort of)
3. X ⊆ M implies X and M are equipotent or X ∈ M

◮ Equipotence of X and M is defined via existence of a set
of Kuratowski pairs that is, essentially, a bijection from
X to M.

◮ X ⊆ M and X /∈ M implies X “is as big as” M.

◮ Note: Axiom A implies Choice
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Grothendieck Universes

◮ Grothendieck, Verdier 1972. Théorie des topos et
cohomologie étale des schémas - (SGA 4) - vol. 1

◮ Universe Axiom: every set N is in a Grothendieck
universe U.

◮ For U to be a Grothendieck universe it must satisfy:
1. U is a transitive set (X ∈ U implies X ⊆ U).
2. U is closed under ZF operations.
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Grothendieck Universes

◮ Grothendieck, Verdier 1972. Théorie des topos et
cohomologie étale des schémas - (SGA 4) - vol. 1

◮ Universe Axiom: every set N is in a Grothendieck
universe U.

◮ For U to be a Grothendieck universe it must satisfy:
1. U is a transitive set (X ∈ U implies X ⊆ U).
2. U is closed under ZF operations.

◮ Grothendieck universes do not imply Choice.
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Grothendieck Universes

◮ Grothendieck, Verdier 1972. Théorie des topos et
cohomologie étale des schémas - (SGA 4) - vol. 1

◮ Universe Axiom: every set N is in a Grothendieck
universe U.

◮ For U to be a Grothendieck universe it must satisfy:
1. U is a transitive set (X ∈ U implies X ⊆ U).
2. U is closed under ZF operations.

◮ Grothendieck universes do not imply Choice.

◮ Not every Tarski universe is transitive.
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Grothendieck Universes

◮ Grothendieck, Verdier 1972. Théorie des topos et
cohomologie étale des schémas - (SGA 4) - vol. 1

◮ Universe Axiom: every set N is in a Grothendieck
universe U.

◮ For U to be a Grothendieck universe it must satisfy:
1. U is a transitive set (X ∈ U implies X ⊆ U).
2. U is closed under ZF operations.

◮ Grothendieck universes do not imply Choice.

◮ Not every Tarski universe is transitive.

◮ With Choice, every Grothendieck universe is Tarski.
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Grothendieck Universes

◮ Grothendieck, Verdier 1972. Théorie des topos et
cohomologie étale des schémas - (SGA 4) - vol. 1

◮ Universe Axiom: every set N is in a Grothendieck
universe U.

◮ For U to be a Grothendieck universe it must satisfy:
1. U is a transitive set (X ∈ U implies X ⊆ U).
2. U is closed under ZF operations.

◮ Grothendieck universes do not imply Choice.

◮ Not every Tarski universe is transitive.

◮ With Choice, every Grothendieck universe is Tarski.

◮ ZFC ⊢ Axiom A ⇔ Universe Axiom
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Higher-Order Set Theory

◮ ι - base type of sets

◮ o - type of propositions

◮ σ → τ - type of functions from σ to τ

Typed Terms:

◮ Vσ - variables x of type σ

◮ Cσ - constants c of type σ

◮ Λσ - terms of type σ generated by

s, t ::= x |c |st|λx .s|s ⇒ t|∀x .s

restricted to well-typed terms.

◮ (λx .s) has type σ → τ where x ∈ Vσ and s ∈ Λτ .
It means the function sending x to s.

◮ Formula - term of type o

◮ Definable: ∧, ∨, ≡, =, ∃, ∃! (Russell-Prawitz)
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Higher-Order Set Theory (Constants)

◮ εσ : (σ → o) → σ

◮ In : ι → ι → o

◮ Empty : ι

◮ Union : ι → ι

◮ Power : ι → ι

◮ Repl : ι → (ι → ι) → ι

◮ UnivOf : ι → ι
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Higher-Order Set Theory (Constants)

◮ εσ : (σ → o) → σ

◮ In : ι → ι → o

◮ Empty : ι

◮ Union : ι → ι

◮ Power : ι → ι

◮ Repl : ι → (ι → ι) → ι
◮ Repl s (λx .t) means {t|x ∈ s}

◮ UnivOf : ι → ι
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Higher-Order Set Theory (Constants)

◮ εσ : (σ → o) → σ

◮ In : ι → ι → o

◮ Empty : ι

◮ Union : ι → ι

◮ Power : ι → ι

◮ Repl : ι → (ι → ι) → ι
◮ Repl s (λx .t) means {t|x ∈ s}

◮ UnivOf : ι → ι
◮ UnivOf s means the least Grothendieck universe with s

as a member.
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Higher-Order Set Theory (Axioms)
◮ Propositional and Functional Extensionality
◮ Choice
◮ Set Extensionality
◮ ∈-induction (higher-order, but equivalent to regularity)

∀P : ι → o.(∀X .(∀x ∈ X .Px) ⇒ PX ) ⇒ ∀X .PX

◮ Empty
◮ Union
◮ Power
◮ Replacement (higher-order formula, not a scheme)

∀X : ι.∀F : ι → ι.∀y : ι.y ∈ {Fx |x ∈ X} ⇔ ∃x ∈ X .y = Fx

where {Fx |x ∈ X} is Repl X (λx .Fx).
◮ Universes. Write UN for UnivOf N.
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Higher-Order Set Theory (Axioms)
◮ Propositional and Functional Extensionality
◮ Choice
◮ Set Extensionality
◮ ∈-induction (higher-order, but equivalent to regularity)

∀P : ι → o.(∀X .(∀x ∈ X .Px) ⇒ PX ) ⇒ ∀X .PX

◮ Empty
◮ Union
◮ Power
◮ Replacement (higher-order formula, not a scheme)

∀X : ι.∀F : ι → ι.∀y : ι.y ∈ {Fx |x ∈ X} ⇔ ∃x ∈ X .y = Fx

where {Fx |x ∈ X} is Repl X (λx .Fx).
◮ Universes. Write UN for UnivOf N.

◮ N ∈ UN

◮ UN is transitive
◮ UN is ZF-closed (Union, Power, Repl)
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Higher-Order Set Theory (Axioms)
◮ Propositional and Functional Extensionality
◮ Choice
◮ Set Extensionality
◮ ∈-induction (higher-order, but equivalent to regularity)

∀P : ι → o.(∀X .(∀x ∈ X .Px) ⇒ PX ) ⇒ ∀X .PX

◮ Empty
◮ Union
◮ Power
◮ Replacement (higher-order formula, not a scheme)

∀X : ι.∀F : ι → ι.∀y : ι.y ∈ {Fx |x ∈ X} ⇔ ∃x ∈ X .y = Fx

where {Fx |x ∈ X} is Repl X (λx .Fx).
◮ Universes. Write UN for UnivOf N.

◮ N ∈ UN

◮ UN is transitive
◮ UN is ZF-closed (Union, Power, Repl)
◮ UN is the least such set.
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Egal

◮ Egal is a proof assistant based on Higher-Order
Tarski-Grothendieck

◮ Natural Deduction proofs – with proof terms

◮ Meant to satisfy de Bruijn criteria (independently
checkable proof terms)

◮ Format of proofs is similar to Coq
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Egal

◮ Egal is a proof assistant based on Higher-Order
Tarski-Grothendieck

◮ Natural Deduction proofs – with proof terms

◮ Meant to satisfy de Bruijn criteria (independently
checkable proof terms)

◮ Format of proofs is similar to Coq

◮ Could we translate Mizar’s MML into Egal?



A Tale of Two
Set Theories

Brown, Pąk

Introduction

Tarski vs.
Grothendieck

Higher-Order
Tarski-
Grothendieck

Proving Axiom A
in Egal

Constructing
Grothendieck
Universes in
Mizar

Conclusion

Egal

◮ Egal is a proof assistant based on Higher-Order
Tarski-Grothendieck

◮ Natural Deduction proofs – with proof terms

◮ Meant to satisfy de Bruijn criteria (independently
checkable proof terms)

◮ Format of proofs is similar to Coq

◮ Could we translate Mizar’s MML into Egal?

◮ First step: Are Mizar’s Axioms provable in Egal?

◮ Axiom A?
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Egal Library

◮ Small: About 65 definitions and 600 theorems.
◮ A few definitions

◮ ordinal : ι → o.
◮ Sep : ι → (ι → o) → ι giving {x ∈ X |P x}
◮ ReplSep : ι → (ι → o) → (ι → ι) → ι

giving {F x |x ∈ X ,P x}
◮ Unordered pairs, singletons, etc.
◮ R : (ι → (ι → ι) → ι) → ι → ι

definition by ∈-recursion.

◮ A few theorems:
◮ x /∈ x
◮ Regularity: x ∈ X ⇒ ∃Y ∈ X .¬∃z ∈ X .z ∈ Y
◮ ordinal α ⇒ ∀β ∈ α.ordinal β
◮ ordinal α ⇒ ordinal β ⇒ α ∈ β ∨ α = β ∨ β ∈ α
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Definition by Epsilon (Membership) Recursion

Functions from sets to sets can be defined by ∈-recursion.
Suppose Φ : ι(ιι)ι satisfies

∀XFG .(∀x .x ∈ X → Fx = Gx) → ΦXF = ΦXG .

Under this condition, Φ defines a function RΦ satisfying

∀X .RΦX = ΦX (λx .RΦx)



A Tale of Two
Set Theories

Brown, Pąk

Introduction

Tarski vs.
Grothendieck

Higher-Order
Tarski-
Grothendieck

Proving Axiom A
in Egal

Constructing
Grothendieck
Universes in
Mizar

Conclusion

Outline

Introduction

Tarski vs. Grothendieck

Higher-Order Tarski-Grothendieck

Proving Axiom A in Egal

Constructing Grothendieck Universes in Mizar

Conclusion



A Tale of Two
Set Theories

Brown, Pąk

Introduction

Tarski vs.
Grothendieck

Higher-Order
Tarski-
Grothendieck

Proving Axiom A
in Egal

Constructing
Grothendieck
Universes in
Mizar

Conclusion

Proving Axiom A

◮ Main Lemma Let U be ZF-closed, transitive set. If
X ⊆ U and X /∈ U, then there is a bijection f : ι → ι
taking {α ∈ U|ordinal α} onto X .

◮ Axiom A easily follows applying the Main Lemma twice
to obtain:

◮ Bijection g from {α ∈ U|ordinal α} onto X .
◮ Bijection h from {α ∈ U|ordinal α} onto U.
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Proving the Main Lemma

◮ Start by defining von Neumann hierarchy: V : ι → ι
such that

∀X .VX =
⋃

x∈X

℘(Vx)

◮ If U is transitive and ZF-closed, then it is V-closed.

◮ Now, let U be transitive and ZF-closed.

◮ Let X ⊆ U such that X /∈ U.
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Proving the Main Lemma

◮ Start by defining von Neumann hierarchy: V : ι → ι
such that

∀X .VX =
⋃

x∈X

℘(Vx)

◮ If U is transitive and ZF-closed, then it is V-closed.

◮ Now, let U be transitive and ZF-closed.

◮ Let X ⊆ U such that X /∈ U.

◮ Define λ be {α ∈ U|ordinal α}.



A Tale of Two
Set Theories

Brown, Pąk

Introduction

Tarski vs.
Grothendieck

Higher-Order
Tarski-
Grothendieck

Proving Axiom A
in Egal

Constructing
Grothendieck
Universes in
Mizar

Conclusion

Proving the Main Lemma

◮ Start by defining von Neumann hierarchy: V : ι → ι
such that

∀X .VX =
⋃

x∈X

℘(Vx)

◮ If U is transitive and ZF-closed, then it is V-closed.

◮ Now, let U be transitive and ZF-closed.

◮ Let X ⊆ U such that X /∈ U.

◮ Define λ be {α ∈ U|ordinal α}.

◮ Define P such that P α x f means x ∈ X and f β 6= x

for β ∈ α.
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Proving the Main Lemma

◮ Start by defining von Neumann hierarchy: V : ι → ι
such that

∀X .VX =
⋃

x∈X

℘(Vx)

◮ If U is transitive and ZF-closed, then it is V-closed.

◮ Now, let U be transitive and ZF-closed.

◮ Let X ⊆ U such that X /∈ U.

◮ Define λ be {α ∈ U|ordinal α}.

◮ Define P such that P α x f means x ∈ X and f β 6= x

for β ∈ α.

◮ Define Q such that Q α f x means x is a sort of
V-minimal set satisfying P α x f .
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Proving the Main Lemma

◮ Start by defining von Neumann hierarchy: V : ι → ι
such that

∀X .VX =
⋃

x∈X

℘(Vx)

◮ If U is transitive and ZF-closed, then it is V-closed.

◮ Now, let U be transitive and ZF-closed.

◮ Let X ⊆ U such that X /∈ U.

◮ Define λ be {α ∈ U|ordinal α}.

◮ Define P such that P α x f means x ∈ X and f β 6= x

for β ∈ α.

◮ Define Q such that Q α f x means x is a sort of
V-minimal set satisfying P α x f .

◮ Define F to be λαf .εx .Q α f x (Choice).
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Proving the Main Lemma

◮ Start by defining von Neumann hierarchy: V : ι → ι
such that

∀X .VX =
⋃

x∈X

℘(Vx)

◮ If U is transitive and ZF-closed, then it is V-closed.

◮ Now, let U be transitive and ZF-closed.

◮ Let X ⊆ U such that X /∈ U.

◮ Define λ be {α ∈ U|ordinal α}.

◮ Define P such that P α x f means x ∈ X and f β 6= x

for β ∈ α.

◮ Define Q such that Q α f x means x is a sort of
V-minimal set satisfying P α x f .

◮ Define F to be λαf .εx .Q α f x (Choice).

◮ Define f to be RF and

◮ g to be λy .εα ∈ λ.fα = y .
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Proving the Main Lemma

◮ Define λ be {α ∈ U|ordinal α}.

◮ Define P such that P α x f means x ∈ X and f β 6= x

for β ∈ α.

◮ Define Q such that Q α f x means x is a sort of
V-minimal set satisfying P α x f .

◮ Define F to be λαf .εx .Q α f x (Choice).

◮ Define f to be RF and

◮ g to be λy .εα ∈ λ.fα = y .

◮ Goal: Prove f is a bijection from λ onto X .
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Proving the Main Lemma

◮ Define λ be {α ∈ U|ordinal α}.

◮ Define P such that P α x f means x ∈ X and f β 6= x

for β ∈ α.

◮ Define Q such that Q α f x means x is a sort of
V-minimal set satisfying P α x f .

◮ Define F to be λαf .εx .Q α f x (Choice).

◮ Define f to be RF and

◮ g to be λy .εα ∈ λ.fα = y .

◮ Goal: Prove f is a bijection from λ onto X .

◮ With some work, get ∀α ∈ λ.Q α f (f α).
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Proving the Main Lemma

◮ Define λ be {α ∈ U|ordinal α}.

◮ Define P such that P α x f means x ∈ X and f β 6= x

for β ∈ α.

◮ Define Q such that Q α f x means x is a sort of
V-minimal set satisfying P α x f .

◮ Define F to be λαf .εx .Q α f x (Choice).

◮ Define f to be RF and

◮ g to be λy .εα ∈ λ.fα = y .

◮ Goal: Prove f is a bijection from λ onto X .

◮ With some work, get ∀α ∈ λ.Q α f (f α).

◮ Easy to see f maps injectively into X .
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Proving the Main Lemma

◮ Define λ be {α ∈ U|ordinal α}.

◮ Define P such that P α x f means x ∈ X and f β 6= x

for β ∈ α.

◮ Define Q such that Q α f x means x is a sort of
V-minimal set satisfying P α x f .

◮ Define F to be λαf .εx .Q α f x (Choice).

◮ Define f to be RF and

◮ g to be λy .εα ∈ λ.fα = y .

◮ Goal: Prove f is a bijection from λ onto X .

◮ With some work, get ∀α ∈ λ.Q α f (f α).

◮ Easy to see f maps injectively into X .

◮ With more work, g is an inverse so f is bijective.
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Grothendieck Universes in Mizar

◮ What about porting from Egal to Mizar?

◮ Can we construct a Grothendieck universe operator in
Mizar?
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Grothendieck Universes in Mizar

◮ What about porting from Egal to Mizar?

◮ Can we construct a Grothendieck universe operator in
Mizar?

◮ Yes. And we have done it
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Tarski-Class in Mizar

◮ From the MML (Bancerek) we have a Tarski−Class
operator taking a set to a Tarski universe containing it.

◮ A ∈Tarski−Class’A.

◮ Tarski−Class’A is a Tarski universe.
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Tarski-Class in Mizar

◮ From the MML (Bancerek) we have a Tarski−Class
operator taking a set to a Tarski universe containing it.

◮ A ∈Tarski−Class’A.

◮ Tarski−Class’A is a Tarski universe.

◮ Problem: Tarski−Class’A may not be transitive.
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Tarski-Class in Mizar

◮ From the MML (Bancerek) we have a Tarski−Class
operator taking a set to a Tarski universe containing it.

◮ A ∈Tarski−Class’A.

◮ Tarski−Class’A is a Tarski universe.

◮ Problem: Tarski−Class’A may not be transitive.

◮ MML: If A is transitive, then Tarski−Class’A is
transitive.
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Tarski-Class in Mizar

◮ From the MML (Bancerek) we have a Tarski−Class
operator taking a set to a Tarski universe containing it.

◮ A ∈Tarski−Class’A.

◮ Tarski−Class’A is a Tarski universe.

◮ Problem: Tarski−Class’A may not be transitive.

◮ MML: If A is transitive, then Tarski−Class’A is
transitive.

◮ Solution: Use
Tarski−Class( the_transitive−closure_of {A})
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Tarski-Class in Mizar

◮ From the MML (Bancerek) we have a Tarski−Class
operator taking a set to a Tarski universe containing it.

◮ A ∈Tarski−Class’A.

◮ Tarski−Class’A is a Tarski universe.

◮ Problem: Tarski−Class’A may not be transitive.

◮ MML: If A is transitive, then Tarski−Class’A is
transitive.

◮ Solution: Use
Tarski−Class( the_transitive−closure_of {A})

◮ The result is transitive and a Grothendieck universe.
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Grothendieck universes operator in Mizar

◮ Define a Mizar type: Grothendieck of ’A.

◮ Type of all Grothendieck universes of A.

◮ Nonempty by previous slide.
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Grothendieck universes operator in Mizar

◮ Define a Mizar type: Grothendieck of ’A.

◮ Type of all Grothendieck universes of A.

◮ Nonempty by previous slide.

◮ The type is closed under arbitrary intersections.
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Grothendieck universes operator in Mizar

◮ Define a Mizar type: Grothendieck of ’A.

◮ Type of all Grothendieck universes of A.

◮ Nonempty by previous slide.

◮ The type is closed under arbitrary intersections.

◮ Use intersection to define an operator giving the least
Grothendieck universe of A.
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Conclusion

◮ Mizar uses Tarski’s Axiom A.

◮ Egal uses Grothendieck universes.

◮ We proved Axiom A in Egal.

◮ We constructed Grothendieck universes in Mizar.

◮ This provides the first steps towards porting the MML
to Egal or future Egal formalizations to the MML.
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