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We briefly describe a proposed research project to support formal ver-
ification of Untyped Plutus Core code [1] in an intuitionistic higher-order
logic supporting higher-order abstract syntax. As preliminary work we have
ported the code for the higher-order set theory proof checker Egal [4] to be a
different proof checker Perche Tieni. Perche Tieni builds in Untyped Plutus
Core as described in [1]. Using Perche Tieni we have verified that a term
satisfies some correctness conditions and another term does not.

During the course of this preliminary work it became clear the specifica-
tion in [1] in some ways differs from what is implemented in Haskell. Con-
sequently the first thing that would need to be done to continue the project
is to obtain a finalized specification of Plutus Core that corresponds to the
Haskell implementation and to modify Perche Tieni to support this finalized
version. After this is done, there are a number of research goals to achieve.
Some of these goals are practical and would result in software to support
the construction of a formal library of Untyped Plutus Core code – giving a
higher degree of security than provided by type checking alone. In addition
to verifying the correctness of code, one could also reason about the cost of
code. In particular one could prove an alternative implementation of a func-
tion is both equivalent and consistently has a lower cost to evaluate. Some
goals are theoretical and would likely result in publishable research papers.
A side product of the project would likely be a series of videos explaining
aspects of Untyped Plutus Core and how to reason about code written in
Untyped Plutus Core.

We end with a handful of bullet points summarizing a few such goals.

• Give a formal description of the intuitionistic higher-order logic Perche
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Tieni supports. This means giving the set of types, terms and propo-
sitions and characterizing the collection of theorems by giving both a
proof theory (via a natural deduction [10] calculus with Curry Howard
style proof terms) and a model theory (via a generalization of Henkin
models [7, 2] for the intuitionistic case and supporting higher-order
abstract syntax [9, 3]).

• Construction of a corresponding Proofgold Theory and support for
translating conjectures and theorems (with proofs) from Perche Tieni
to a format publishable in the Proofgold blockchain.1

• Support general automation by giving a cut-free calculus generalizing
the calculus supporting the higher-order automated theorem prover
Satallax to the intuitionistic case. This would involve combining the
work of Brown and Smolka [5] (implemented in Satallax) with the work
of Hermant and Lipton [8].

• Support specific kinds of automation, e.g., tactics for proving via induc-
tion when working with inductively defined propositions. Additionally
we could apply AI-based techniques for aiding with tactic based prov-
ing, e.g., what is implemented in TacTicToe [6].
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