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Abstract. We study Monte Carlo Tree Search to guide proof search in
tableau calculi. This includes proposing a number of proof-state eval-
uation heuristics, some of which are learnt from previous proofs. We
present an implementation based on the leanCoP prover. The system is
trained and evaluated on a large suite of related problems coming from
the Mizar proof assistant, showing that it is capable to find new and
different proofs.

1 Introduction

Recent advances in Automated Reasoning include both theoretical improvements
in the calculi, including combining superposition with SAT solving in recent ver-
sions of Vampire [4] and research on the InstGen calculus in iProver [16], but
also more practical improvements, such as more efficient and precise term index-
ing techniques [24], efficient non-clausal tableau proof search [20], or the use
of machine learning for problem size reduction [12]. Furthermore, many auto-
mated reasoning techniques have been extended to interesting theories beyond
first-order logic, including the developments in SMT solving in CVC4 [3] or to
higher-order logic [6,29]. Many of these developments have been of great value for
interactive theorem provers, whose most powerful general purpose automation
techniques today rely on automated reasoning tools [5].

However, current automated theorem provers are still quite weak in finding
more complicated proofs, especially over large formal developments [27]. The
search typically blows up after several seconds, making the chance of finding
proofs in longer times exponentially decreasing [2]. This behaviour is reminiscent
of poorly guided search in games such as chess and Go. The number of all possible
variants there typically also grows exponentially, and intelligent guiding methods
are needed to focus on exploring the most promising moves and positions.

The guiding method that has recently very significantly improved automatic
game play is Monte Carlo Tree Search (MCTS), i.e., expanding the search
based on its (variously guided) random sampling [7]. Recent developments in
MCTS include combination of exploration and exploitation [15], combination of
online and offline knowledge with the All-Moves-As-First (AMAF) heuristic [9],
and adaptive tuning of rollout policies during search [21]. As shown for exam-
ple in the AlphaGo system [25], machine learning can be used to train good
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position evaluation heuristics even in very complicated domains that were previ-
ously thought to be solely in the realm of “human intuition”. From the point of
game theory, automated theorem proving is a combinatorial single-player game.
For some games in this category, including SameGame [22] and the NP-hard
Morpion Solitaire [21], MCTS has produced state-of-the-art players. [11] shows
that proof search can be positively guided by one-step lookahead, and MCTS
allows approximation of multi-step lookaheads by use of random sampling. While
“finishing the randomly sampled game” – as used in the most straightforward
MCTS for games – is not always possible in ATP (it would mean finishing the
proof), there is a chance of learning good proof state evaluation heuristics that
will guide MCTS for ATPs in a similar way as e.g. in AlphaGo.

In this work, we study MCTS methods that can guide the search in auto-
mated theorem provers, and evaluate their impact on interactive theorem prov-
ing problems in first-order logic. We focus on the tableau calculus and on the
leanCoP prover [18], which has a compact implementation that is easy to exper-
iment with. We can also build on previous machine learning extensions of lean-
CoP [13,28]. To our knowledge, this is the first time MCTS has been applied to
theorem proving.

Contributions

We introduce a set of MCTS heuristics tailored to proof search including two
state transition probability heuristics, three state evaluation heuristics, and two
tree expansion policies related to restricted backtracking (Sect. 4). Furthermore,
we present an implementation interleaving a traditional proof search with MCTS
(Sect. 5) and measure its performance on a set of Mizar Mathematical Library
problems (Sect. 6).

2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a technique to guide search in a large
decision space by taking random samples and evaluating their outcome. First,
we will establish a format for problems tractable with MCTS. Then, we give
a notation for Monte Carlo trees. Finally, we show how to create and evolve a
Monte Carlo tree for given problems with problem-specific heuristics.

2.1 Problem Setting and Example

A tree search problem can be minimally characterised with:

– a set of states S,
– an initial state s0 ∈ S, and
– a state transition function δ : S → 2S .
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As an example of a tree search problem, consider the travelling salesman
problem: A salesman has to visit a set of cities C and wants to minimise the
total distance travelled, where d(c1, c2) is the distance between two cities.

A possible tree search characterisation of the travelling salesman problem is:

– The set of states S are the sequences of cities visited so far; for example
[Prague], [Prague, Vienna, Bratislava], [Paris].

– The initial state s0 is the empty sequence.
– The state transition function δ returns for a sequence of already visited

cities the set of sequences where one previously unvisited city is added; i.e.
δ(s) =

⋃
c∈C,c/∈s[s, c]. For example, δ([Prague, Vienna]) could contain [Prague,

Vienna, Budapest] and [Prague, Vienna, Bratislava].

The number of states of the travelling salesman problem is exponential in
the number of cities, therefore constructing a whole tree to obtain an optimal
solution is not feasible. To bias the tree search towards more promising regions,
we define two types of heuristics:

– the probability P : S → [0, 1] of choosing a state and
– the reward ρ : S → [0, 1] for a state.

P (s′ | s) is the probability for choosing state s′ when being in its predecessor
state s, where s′ ∈ δ(s). In the travelling salesman example,

P ([Prague, Vienna] | [Prague]) > P ([Prague, Paris] | [Prague])

means that when the salesman is in Prague, Vienna should be chosen as next
city with a higher probability than Paris.

ρ(s) is the overall quality of a (final) state s. Due to the MCTS flavour we
use [15], it has to be normed between [0, 1]. In the travelling salesman example,
a sensible ρ should yield larger values for city sequences with smaller overall
distance.

2.2 Trees

A Monte Carlo tree stores the states that have been expanded during a tree
search, and keeps statistics about the states. We define the set T of Monte Carlo
tree nodes.

Definition 1 (Monte Carlo tree node). A Monte Carlo tree node is a 5-tuple
(n, r, s, S, T ) ∈ T , where:

– n ∈ N is the number of times the node was visited,
– r ∈ R is the sum of the rewards of successors,
– s ∈ S is the state of the node,
– S ∈ 2S are the unvisited successor states of s, and
– T ∈ 2T are the child tree nodes.

Monte Carlo Tree Search evolves a tree by repeatedly applying a step function
until a certain criterion is fulfilled, e.g. a certain number of steps is performed,
time has elapsed etc. Ideally, every step should refine the quality estimate of the
states in the Monte Carlo tree. We show the step function in the next section.
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2.3 Monte Carlo Step Function

The Monte Carlo step function performs the following: First, it selects a node in
the Monte Carlo tree. From the state of node, it randomly samples a sequence of
successor states (called simulation). It then creates a new node′ with some state
from the simulation and makes it a child of the original node. Finally, a reward
is calculated from the simulation and backpropagated to all ancestors of node′.

The idea is that rewards obtained from simulations starting from a certain
node let us estimate the usefulness of the node itself. A description of the
pseudocode in Algorithm 1 follows. For brevity, the pseudocode assumes that
every state has at least one successor state (i.e., for every s ∈ S, |δ(s)| > 0).

Algorithm 1. Monte Carlo step function.
1: procedure step(node)
2: if node.S = ∅ then
3: best ← arg maxt∈node.T uct(node.n, t) � selection
4: reward ← step(best)
5: else
6: s′ ← biasedDraw(P, node.s, node.S)
7: sim ← simulation(D, s′) � simulation
8: (node′, reward) ← expansion(sim) � expansion
9: node.S ← node.S \ {s′}

10: node.T ← node.T ∪ {node′}
11: node.n ← node.n + 1 � backpropagation
12: node.r ← node.r + reward
13: return reward

In l. 3, the step function recursively selects the child node with the high-
est UCT (Upper Confidence Bounds for Trees) value [15]. UCT establishes an
order on nodes, combining exploration and exploitation: exploration prefers less
frequently visited nodes, whereas exploitation prefers nodes with higher average
reward. The ratio between these two goals is determined by the exploration con-
stant Cp, where higher values give more emphasis to exploration. The average
reward of a node (nj , rj , s, S, T ) is rj

nj
. The UCT function takes the number of

times n that a parent node was visited, as well as a child node:

uct(n, (nj , rj , s, S, T )) =
rj

nj
+ Cp

√
ln n

nj
.

As soon as a node with unvisited successor states is encountered (l. 5), an unvis-
ited successor state s′ is drawn (l. 6), where the probability of picking s′ is
proportional to P (s′ | s). From the chosen s′, a simulation is performed up to
a constant simulation depth D. A simulation starting from a state si draws a
state si+1 from δ(si), with probability P (si+1 | si). This is repeated for a certain
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number of times, yielding a simulation [s1, . . . , sD], where D is the simulation
depth and for every i, si+1 ∈ δ(si).

From the simulation, the expansion operation yields a new node′ and a
reward. The default expansion policy creates node′ from the first state s1 of the
simulation and calculates the reward from the last state, i.e. reward = ρ(sD).
Therefore, the new expansion node is node′ = (1, ρ(sD), s1, δ(s1), ∅).

The expansion node node′ is added to the child nodes (l. 10) and the reward
is propagated back until the root (l. 11–13).

3 Tableau

In this section, we shortly recall some basics of tableau [10] and introduce notions
specific to representing tableau as MCTS.

Tableau calculi are methods to prove the inconsistency of formulae. A tableau
is a tree with formulae as nodes. The root is the formula whose inconsistency one
attempts to show. All other nodes are produced by application of tableau rules
to nodes above them; such rules include α-rules to treat conjunctions and β-rules
to treat disjunctions. For example, when a branch contains a disjunction (called
β-formula), then an application of a β-rule (parametrised by the disjunction)
adds the disjuncts as children to some leaf of the branch.

The choice of β-formulae in tableau proof search is one of the main sources
of nondeterminism and has a considerable impact on the length of the proof
search. It corresponds to the choice of given clauses in saturation-based provers
and extension clauses in the connection calculus. Therefore, in this work, we
focus on influencing the proof search mostly by influencing the choice of β-
formulae. We will abstract from the actual tableau steps, only assuming that
the considered tableau calculus that is sound and complete.

A branch of a tableau is closed iff it contains some formula and its negation. A
tableau is closed iff all of its branches are closed. A formula is proven inconsistent
when there is a closed tableau with the formula at the root. For the heuristics
in Sect. 4, we define β-children, which correspond to open subgoals in interactive
theorem provers and literals of open branches in the connection calculus.

Definition 2 (β-children). Given a tableau t, we call direct children of
branches β-children of t and denote them as β(t).

Open β-children (denoted βo(t)) are all β-children on open branches not
having any branch as descendant. Closed β-children (denoted βc(t)) are all β-
children that are not open, i.e. βc(t) = β(t) \ βo(t).

Example 1. In state 4 in Fig. 1, closed β-children are p, ¬p, s, q, and ¬q. Open
β-children are t and r.

The successor tableaux of a tableau are all tableaux that can be obtained from
the original tableau by the application of some rule. We now give a description
of tableau construction for a given formula f in the language of Sect. 2.1:
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Fig. 1. Proof search for formula f = (p∨q∨r)∧(¬p∨s)∧(¬p∨t∨u)∧¬s∧(¬q∨t)∧(¬q∨s).
Open β-children are surrounded by boxes.

– The set of states S is the set of tableaux.
– The initial state s0 is a tableau containing only the formula f as root.
– The transition function δ(s) obtains all successor tableaux of s produced by

applications of tableaux rules.

This characterisation in conjunction with the default expansion policy from
Sect. 2.3 has the downside that its Monte Carlo trees are approximately as deep
as the number of proof steps, whereas the corresponding tableaux are as deep
as the maximal proof depth. For example, the TPTP [26] problem PUZ035-1
permits a proof consisting of about 40 proof steps in a tableau of depth 6. The
Monte Carlo tableau characterisation, however, requires building a Monte Carlo
search tree with a depth close to 40, which is challenging even when using a good
state reward ρ. The required tree depth can be often decreased with the tableau-
specific expansion policies described in Sect. 4.3, but finding a characterisation
that reliably reduces the depth of the search tree remains future work.

4 Tableau Heuristics

In Sect. 2.1, we defined two kinds of heuristics to guide Monte Carlo Tree Search,
namely transition probability and state reward. In this section, we propose such
heuristics, as well as a set of incomplete expansion policies.

4.1 Transition Probability

The transition probability P (s′ | s) is the probability of choosing state s′ as
successor state when in state s, where s′ ∈ δ(s). P is used to bias the selection
of a successor state in random simulations, as well as to determine the order of
visiting previously unvisited successor states; see Algorithm 1.

When in some state s, different kinds of tableau rules might be applicable;
for example α-rules and β-rules (similarly to extension and reduction rules in
the connection calculus). In this work, we focus on influencing the probability of
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β-rules depending on their used β-formulae, which corresponds to earlier work
about choosing good extension clauses in the connection calculus [28]. Therefore,
we only vary the probabilities of β-rules and attribute to all non-β-rules the same
probabilities.

As transition probabilities are among of the most frequently calculated values
in Monte Carlo Tree Search, the speed of this heuristic is important. The baseline
heuristic is to give the same probability to all transitions, i.e. P1(s′ | s) ∝ 1.

4.1.1 β-size
The β-size heuristic attributes a probability to a β-rule that is inversely propor-
tional to the number of newly opened β-children:

Pβ(s′ | s) ∝ (|βo(s′)| − |βo(s)|)−1.

Example 2. In state 1 of Fig. 1, it is possible to apply the β-rule to the leftmost
branch with either ¬p∨s or ¬p∨ t∨u. The first formula consists of two disjuncts
and the second of three disjuncts, so the β-size heuristic attributes a probability
proportional to 1

2 to the first and 1
3 to the second formula. The probabilities are

normalized to sum to 1, obtaining the actual values 3
5 and 2

5 respectively.

4.1.2 Naive Bayesian Probability
Given the information about the formulae that were used in previous successful
proofs at particular proof states, it is possible to calculate the likelihood that
a given formula contributes to the current proof attempt in the current proof
state. Naive Bayesian probability is used in [13] to order formulae by

P (li | f) =
P (li)P (f | li)

P (f)
∝ P (li)

∏

j

P (fj | li),

where li is a β-formula from a set l of applicable β-formulae, and f is a set of
features that characterises the current tableau, such as its formulae symbols.

P (li) and P (fj | li) as in [13] frequently yield values such that the probability
of applying β-rules is magnitudes smaller than for non-β-rules, slowing down
proof search. For that reason, we introduce normed probability estimates.

First, let us denote the knowledge about the usage of β-formulae in previous
proofs by F (li), which is the multiset of sets of features having occurred in
conjunction with li when li was used in a proof. |F (li)| is the total number of
times that li was used in previous proofs.

Example 3. F (l1) = {{f1, f2} , {f2, f3}} means that the formula l1 was used
twice in previous proofs; once in a situation characterised by the features f1 and
f2, and once when features f2 and f3 were present.

This allows us to write the normed formula probability as

P (li) =
|F (li)|

maxlj∈l |F (lj)|
.
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Using max instead of
∑

yields larger probabilities, while still ensuring that the
probabilities do not exceed 1.

To obtain the normed conditional feature probability, we distinguish whether
the feature already appeared in conjunction with the formula. In case it did, its
probability is

P (fj | li,∃f ′ ∈ F (li).fj ∈ f ′) =

∑
f ′∈F (li)

1f ′(fj)

|F (li)|
,

where 1A(x) denotes the indicator function that returns 1 if x ∈ A and 0 oth-
erwise. In case the feature fj has never appeared with the rule li before, we
attribute it some minimal probability with respect to all current features f and
all currently applicable rules l:

P (fj | li,¬∃f ′ ∈ F (li).fj ∈ f ′) = min
fj∈f , li∈l, ∃f ′∈F (li).fj∈f ′

P (fj | li)

The two definitions form a complete description of the normed feature probabil-
ity P (fj | li).

4.2 State Reward

The state reward ρ(s) is evaluated for the final state s of a random simulation. It
estimates the likelihood of finding a proof from any ancestor of the starting node
of the random simulation. Therefore, the state reward influences which regions
of the Monte Carlo tree are explored.

As the state reward is only calculated once per random simulation, it can in
practice be a function that is more expensive to calculate than, say, the transition
probability. A baseline state reward function ρr returns random values between
0 and 1.

To estimate the discrimination of a heuristic, i.e. its ability to distinguish
nodes that lead to proofs from nodes that do not, we take the ratio of the
average rewards on the Monte Carlo tree branch leading to a proof and the
average rewards of all Monte Carlo tree nodes.

4.2.1 β-ratio
The β-ratio reward function considers the ratio of closed β-children and all β-
children in the tableau:

ρβ(s) =
|βc(s)|
|β(s)| .

This heuristic guarantees that for a closed tableau s, the reward ρβ(s) is 1.

Example 4. For state 4 in Fig. 1, there are five closed β-children and seven β-
children in total. Therefore, the reward ρβ is 5

7 .
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4.2.2 Formula Weight Reward
The formula weight reward heuristic calculates the average inverse weight
(i.e. formula size) of all open β-children, encouraging tableaux with smaller for-
mulae. Furthermore, the heuristic gives higher impact to formulae closer to the
root, because the closer to the root a formula is in the tableau, the more likely
it is to be chosen in other random simulations from the same starting node,
therefore it is more characteristic for the starting node. For that reason, the
heuristic weighs every inverse formula weight with the depth of the formula in
the tableau, where the depth of a formula f in a tableau is expressed as d(f).
However, because rewards need to be normed between 0 and 1, the depth needs
to be normalised. For that purpose, we introduce the concept of a normalisation
function.

Definition 3 (Normalisation function). A normalisation function Nu
l :

[0,∞) → [u, l) with l < u is strictly increasing and fulfils limx→∞ Nu
l (x) = u

and Nu
l (0) = l.

We choose the normalisation function Nu
l (x) = u −

(
x + (u − l)−1

)−1. This
allows us to write the final formula weight function:

ρw(s) =
1

|βo(s)|
∑

c∈βo(s)

1
|c|N

1
l (d(c)),

where l > 0 is a constant that determines the impact of formula depth. For
example, when l = 1, then depth has no influence whatsoever, whereas l ≈ 0
gives hardly any weight to formulae close to the root. In this particular ρw, we
use the arithmetic mean, but we have also experimented with geometric and
harmonic means as well as the minimum.

Example 5. The open β-children r and t in state 4 of Fig. 1 are at depth 1 and 2,
respectively. Therefore, the formula weight reward of the tableau is the mean of
1

|r|N
1
l (1) and 1

|t|N
1
l (2).

This heuristic is based on similar ideas as the pick-given ratio popularised
by Otter [23].

4.2.3 Machine-Learnt Refutability Estimate
The refutability of a tableau s can be estimated with knowledge how often open
β-children of s were successfully refuted in previous proofs.

We call a formula refuted when all branches on which it lies are closed. A
formula is unsuccessfully refuted if it is present in the tableau, but lies on at least
one open branch. Note that refuted β-children are always closed (as defined in
Sect. 3), but closed β-children are not necessarily refuted.

Example 6. The β-child q in state 4 of Fig. 1 is closed, but not refuted.
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When statistics about previous refutations of formulae are available, we use
them to estimate the refutability of formulae in the current proof search, similarly
to [8]. Let p(f) be the number of successful and n(f) the number of unsuccessful
refutations of a formula f . Then the irrefutability ratio of f is n(f)

p(f)+n(f) .
We want the irrefutability ratio to have an effect proportional to the amount

of information available about previous refutation attempts. Consider the case
for a formula f where p(f) = 0 and n(f) = 1. The irrefutability ratio of f
then is 100%, but because we have information about only a single refutation
attempt, we want to attribute less meaning to it compared to, say, a formula
where p(f) = 0 and n(f) = 1000. To achieve this, we weigh the irrefutability
with N l

u(v(p(f)+n(f))), where v ≥ 0, u ≥ 0 and l ≤ 1 are constants. This term
reflects the confidence in the irrefutability ratio. v determines how fast we gain
confidence, u is the minimal and l is the maximal confidence.

The estimated refutability of the formula f then is the opposite of its
confidence-weighted irrefutability:

1 − N l
u(v(p(f) + n(f)))

n(f)
p(f) + n(f)

The machine-learnt refutability estimate of a whole tableau is the mean of
estimated refutabilities of the tableau’s open β-children.

Example 7. The open β-children in state 4 of Fig. 1 are t and r. Assume that
p(t) = 222, n(t) = 115, p(r) = 62, and n(r) = 553. Then the machine-learnt
refutability estimate of the tableau is the mean of 1 − N l

u(v · 337)115337 and 1 −
N l

u(v · 615)553615 . In case we have total confidence in the statistics (e.g. by setting
u = l = 1) and use the arithmetic mean, the resulting refutability estimate is
0.38.

4.3 β-minimal Expansion Policies

The default expansion policy in Sect. 2.3 creates new nodes in the Monte Carlo
tree from the first state s1 of a random simulation [s1, . . . , sD]. This can be
counterproductive in cases where the random simulation closes a subtree, but
fails to find a proof in the end. In that case, keeping the successful part of the
proof attempt, i.e. the closed subtree, can accelerate proof search.

This motivates β-minimal expansion policies, where new nodes are created
not from the first state of a simulation, but from some state minimising a function
related to β-children.

The first policy is the β-child expansion policy, which chooses the state with
fewest open β-children, i.e., mini |βo(si)|.

The second policy is the β-parent expansion policy, which chooses the state
with fewest parents of open β-children, i.e. mini

∣
∣
∣
⋃

o∈βo(si)
p(o)

∣
∣
∣, where p(s)

denotes the parent of a node s.
Similarly to restricted backtracking [19], the β-minimal expansion policies

lose completeness, but can in practice perform significantly better than complete
strategies.



Monte Carlo Tableau Proof Search 573

Example 8. In the proof search in Fig. 1, the proof attempt failed. We assume
that the proof search started from a Monte Carlo node n containing state 1.
The default expansion policy would add a new node corresponding to state 2
as child tree node of n to the Monte Carlo tree. However, this would discard
the closed subtree found in state 3. In contrast, the β-child expansion policy
compares the open β-children in all successor states of state 1: State 2 has three
open β-children (s, q, and r), state 3 has two (q and r) and state 4 has two as
well (t and r). State 3 and 4 are therefore minimal, in which case the first of
them (i.e. state 3) is used as state for a new Monte Carlo leaf node that is added
as child tree node of n to the Monte Carlo tree.

5 Implementation

We implemented the proposed Monte Carlo Tableau calculus in the OCaml ver-
sion [14] of leanCoP [18]. The implementation and experimental data are avail-
able at: http://cl-informatik.uibk.ac.at/users/mfaerber/cade-26.html. In the
rest of this paper, we refer to the OCaml version of leanCoP as leanCoP.

Monte Carlo proof search can be used to advise a base prover : The proof
search is conducted by a base prover such as leanCoP. When the base prover has
a choice between different applicable proof rules, it starts the advisor, i.e. Monte
Carlo proof search, which returns after a certain number of iterations an order on
the proof rules to be tried by the base prover. This order is based on the average
Monte Carlo rewards achieved for each rule. Furthermore, when Monte Carlo
proof search finds proofs while establishing the proof rule order, the proofs are
used directly by the base prover. In the extreme case, when setting the number
of Monte Carlo iterations to ∞, the whole proof search is done by Monte Carlo
proof search and the base prover is only responsible for starting it and printing
the proof. We refer to our implementation of Monte Carlo proof search as advisor
for leanCoP as Monte Carlo Prover.

In contrast to leanCoP, Monte Carlo proof search does not require iterative
deepening. Instead, an important parameter is the simulation depth D as shown
in Sect. 2.3, which determines the length of random simulations.

leanCoP is equipped with a set of strategies, where each strategy consists
of a set of options, such as whether to use definitional clausal normal form. A
strategy schedule tries different strategies for a defined amount of time until
a strategy succeeds. One of the most influential developments in leanCoP was
restricted backtracking [19], which discards other possibilities to close a subtree
once it has been closed. See Fig. 2 for a comparison of the complete strategy
with the restricted backtracking strategy, as well as an illustration of a Monte
Carlo search.

In the next section, we evaluate how well our Monte Carlo prover performs
in comparison to single leanCoP strategies.

http://cl-informatik.uibk.ac.at/users/mfaerber/cade-26.html
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Fig. 2. The two main leanCoP strategies compared with Monte Carlo proof search.

6 Evaluation

In this section, we evaluate the Monte Carlo prover described in Sect. 5. We
first describe the dataset and the evaluation parameters. Then we evaluate the
different heuristics given in Sect. 4, as well as the influence of several numeric
parameters. Finally, we show our best obtained Monte Carlo configuration and
compare it to leanCoP.

Experimental Setup. We used the bushy version of the MPTP2078 dataset [1],
which is particularly valuable for our machine learning algorithms as it provides
consistent symbols over all problems. To generate training data for the machine
learning heuristics, we ran leanCoP for 60 s on all the MPTP2078 problems, using
a strategy schedule with three strategies, including a restricted backtracking and
a complete strategy. The outcome of the training runs were formula usability
data for the Naive Bayes heuristic in Sect. 4.1.2 as well as formula refutability
data for the heuristic in Sect. 4.2.3.

For the main evaluation, we used definitional classification and a timeout
of 10 s per problem for both leanCoP and the Monte Carlo prover, where the
10 s timeout is also used for the MPTP2078 evaluation in [14]. In that setting,
leanCoP solves 509 problems with restricted backtracking and 388 without, the
union being 562 problems. In the remainder of this paper, leanCoP refers to the
restricted backtracking strategy of leanCoP.

For the Monte Carlo prover, we used the following initial parameters:

– Maximal simulation depth D: 50
– Exploration constant Cp: 1 (see Sect. 2.3)
– Transition probability: β-size (see Sect. 4.1.1)
– State reward: β-ratio (see Sect. 4.2.1)
– Depth attenuation for formula weight reward: 0 (see Sect. 4.2.2)
– Refutability mean: min (see Sect. 4.2.3)
– Refutability confidence velocity: 1 (see Sect. 4.2.3)
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– Minimal/maximal refutability confidence: 0/1 (see Sect. 4.2.3)
– Expansion policy: β-child expansion policy (see Sect. 4.3)

Heuristics Influence. We evaluated the Monte Carlo prover with a set of con-
figurations where each configuration deviates by one heuristic from the initial
parameters. For every configuration, we collected the set of solved problems.
Furthermore, we collected the problems solved by all Monte Carlo configura-
tions, amounting to 196 problems. On these problems, for all Monte Carlo con-
figurations, we evaluated the average number of MCTS iterations and MCTS
simulation steps, as well as the average reward discrimination; see Table 1.

The machine-learnt reward heuristic performs best, with a very good dis-
crimination rate of 2.30. Surprisingly, the random reward heuristic solves only
three problems less, despite its worse discrimination.

The Bayesian transition probability shows very poor performance. The β-size
heuristic is the winner for transition probability.

The β-parent expansion policy outperforms the default expansion policy by
20 problems, i.e. 6%.

Table 1. Comparison of Monte Carlo heuristics. Iterations, simulation steps and dis-
crimination ratio are averages on the 196 problems solved by all configurations.

Configuration Iterations Sim. steps Discr. Solved

Base 116.46 1389.82 1.37 332

Random reward 104.88 1167.98 1.19 364

Formula weight reward 108.13 1268.88 1.12 334

ML reward 108.52 1151.61 2.30 367

Bayes P 528.39 8014.03 1.35 248

Constant P 949.62 17539.59 1.31 237

β-parent exp. 224.72 2769.12 1.40 348

Default exp. 371.81 4793.58 1.38 328

Parameter Influence. We identified three numeric parameters to be highly
influential for proof search; namely the simulation depth D, the exploration
constant Cp, and the maximal number of MCTS iterations per base prover step.
We evaluated a large range of values for these parameters, keeping the remaining
parameters fixed to the standard values. The results are shown in Fig. 3.

We achieve the highest performance of the Monte Carlo prover when using
it as an advisor for a base prover. From Fig. 3a, it becomes clear that the Monte
Carlo prover is most useful when given between 20 and 40 iterations per base
prover step. Below that mark, the reward estimates are too imprecise, and above
that mark, the reward precision increases only marginally, compared to the time
spent in the MCTS prover.

The higher the maximal simulation depth D (see Fig. 3b), the more time the
prover spends looking for proofs at less promising higher depths. Figure 3c shows
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that the average number of simulation steps decreases with increasing D. This
indicates that at higher simulation depths, the computational effort to calculate
the set of possible steps increases.

Figure 3d shows the number of solved problems for the β-ratio and the
machine-learnt state evaluation heuristics as function of the exploration con-
stant Cp. For a good state reward heuristic, one expects in such a graph a local
optimum, where exploration and exploitation combine each other best. As one
can see, this is given for the machine-learnt heuristic at Cp ≈ 0.75, whereas the
curve for the β-ratio heuristic does not expose such an optimum.

Fig. 3. Parameter influence.

Best Found Monte Carlo Configuration. Our best found configuration
MC+ for the Monte Carlo prover uses the arithmetic mean for the ML reward,
a maximal number of 27 MCTS iterations and a simulation depth of 20. Inter-
estingly, is has a discrimination ratio of only 1.07, which suggests that a high
discrimination ratio indicates good performance, but is not absolutely necessary
to achieve it.
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MC+ performs on average 902 times more inferences in MCTS than in the
base prover. Furthermore, for the problems solved both by leanCoP and by MC+,
leanCoP takes on average 21698 inferences, while MC+ takes 20243 inferences
(sum of base prover + MCTS inferences).

MC+ solves 538 problems, compared to 509 by leanCoP. Of the 538 problems,
90 problems were previously not solved by leanCoP. The union of MC+ and
leanCoP solves 599 problems, compared to 531 problems solved by leanCoP with
a timeout of 20 s. That means that we solve 12.8% more problems. Furthermore,
MC+ proves more problems than leanCoP when given only half the time.

Prover Timeout [s] Solved problems

leanCoP 10 509

MC+ 10 538

leanCoP + MC+ 10 + 10 599

leanCoP 20 531

7 Conclusion

We have proposed a combination of Monte Carlo Tree Search and tableau auto-
mated theorem proving. MCTS provides a theoretically founded fine-grained
mechanism to control the search space of tableau-based theorem provers based
on random sampling and state evaluation heuristics, which might eventually even
replace iterative deepening. We have shown that a fast rollout policy combined
with a machine-learnt state evaluation heuristic and a custom expansion policy
produce the best results. The strength of the current system has turned out to
be its function as advisor for existing provers, demonstrated by our integration
into leanCoP. This opens a wide space of future work, profiting from the ongoing
research in MCTS; examples include self-updating reward heuristics, adaptive
simulation depths, automatic parameter tuning, and different characterisations
of tableau search or expansion policies such as AMAF to produce more shallow
Monte Carlo trees. Furthermore, identifying controversial choices in the base
prover would allow using the Monte Carlo prover as advisor more efficiently.
Finally, neural networks could be used as state reward heuristics.
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1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2014)
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10. Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 2, pp. 100–178. Elsevier and MIT Press,
New York (2001)

11. Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti
and Tiwari [17], pp. 313–329

12. Kaliszyk, C., Schulz, S., Urban, J., Vyskočil, J.: System description: E.T. 0.1. In:
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